File size: 7,902 Bytes
79b501f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f10910c
 
 
 
 
 
 
 
79b501f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f10910c
 
 
 
 
 
 
 
 
 
 
 
 
 
79b501f
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
license: mit
base_model: SCUT-DLVCLab/lilt-roberta-en-base
tags:
- generated_from_trainer
model-index:
- name: lilt-en-funsd
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# lilt-en-funsd

This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7177
- Answer: {'precision': 0.8729411764705882, 'recall': 0.9082007343941249, 'f1': 0.8902219556088783, 'number': 817}
- Header: {'precision': 0.6421052631578947, 'recall': 0.5126050420168067, 'f1': 0.5700934579439252, 'number': 119}
- Question: {'precision': 0.906021897810219, 'recall': 0.9220055710306406, 'f1': 0.9139438564196963, 'number': 1077}
- Overall Precision: 0.8800
- Overall Recall: 0.8922
- Overall F1: 0.8860
- Overall Accuracy: 0.8064

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2500
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch    | Step | Validation Loss | Answer                                                                                                   | Header                                                                                                    | Question                                                                                                  | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:--------:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 0.4044        | 10.5263  | 200  | 1.1266          | {'precision': 0.8246606334841629, 'recall': 0.8922888616891065, 'f1': 0.8571428571428571, 'number': 817} | {'precision': 0.3495575221238938, 'recall': 0.6638655462184874, 'f1': 0.4579710144927537, 'number': 119}  | {'precision': 0.8747609942638623, 'recall': 0.8495821727019499, 'f1': 0.8619877531794631, 'number': 1077} | 0.7992            | 0.8559         | 0.8266     | 0.7671           |
| 0.0518        | 21.0526  | 400  | 1.2142          | {'precision': 0.8138006571741512, 'recall': 0.9094247246022031, 'f1': 0.8589595375722543, 'number': 817} | {'precision': 0.49612403100775193, 'recall': 0.5378151260504201, 'f1': 0.5161290322580645, 'number': 119} | {'precision': 0.8705234159779615, 'recall': 0.8802228412256268, 'f1': 0.8753462603878117, 'number': 1077} | 0.8236            | 0.8718         | 0.8470     | 0.8011           |
| 0.0137        | 31.5789  | 600  | 1.5789          | {'precision': 0.8478513356562137, 'recall': 0.8935128518971848, 'f1': 0.8700834326579261, 'number': 817} | {'precision': 0.5588235294117647, 'recall': 0.4789915966386555, 'f1': 0.5158371040723981, 'number': 119}  | {'precision': 0.8839528558476881, 'recall': 0.9052924791086351, 'f1': 0.8944954128440367, 'number': 1077} | 0.8529            | 0.8753         | 0.8639     | 0.7932           |
| 0.008         | 42.1053  | 800  | 1.5466          | {'precision': 0.8540478905359179, 'recall': 0.9167686658506732, 'f1': 0.8842975206611571, 'number': 817} | {'precision': 0.528169014084507, 'recall': 0.6302521008403361, 'f1': 0.5747126436781609, 'number': 119}   | {'precision': 0.899074074074074, 'recall': 0.9015784586815228, 'f1': 0.9003245248029671, 'number': 1077}  | 0.8552            | 0.8917         | 0.8731     | 0.7876           |
| 0.0047        | 52.6316  | 1000 | 1.5218          | {'precision': 0.8712029161603888, 'recall': 0.8776009791921665, 'f1': 0.874390243902439, 'number': 817}  | {'precision': 0.5882352941176471, 'recall': 0.5042016806722689, 'f1': 0.5429864253393665, 'number': 119}  | {'precision': 0.9080459770114943, 'recall': 0.8802228412256268, 'f1': 0.8939179632248938, 'number': 1077} | 0.8761            | 0.8569         | 0.8664     | 0.8023           |
| 0.0026        | 63.1579  | 1200 | 1.6588          | {'precision': 0.8784596871239471, 'recall': 0.8935128518971848, 'f1': 0.8859223300970873, 'number': 817} | {'precision': 0.532258064516129, 'recall': 0.5546218487394958, 'f1': 0.54320987654321, 'number': 119}     | {'precision': 0.8739946380697051, 'recall': 0.9080779944289693, 'f1': 0.8907103825136613, 'number': 1077} | 0.8554            | 0.8813         | 0.8681     | 0.7971           |
| 0.0013        | 73.6842  | 1400 | 1.6428          | {'precision': 0.903822441430333, 'recall': 0.8971848225214198, 'f1': 0.9004914004914006, 'number': 817}  | {'precision': 0.6166666666666667, 'recall': 0.6218487394957983, 'f1': 0.6192468619246863, 'number': 119}  | {'precision': 0.9017132551848512, 'recall': 0.9285051067780873, 'f1': 0.9149130832570905, 'number': 1077} | 0.8858            | 0.8977         | 0.8917     | 0.8127           |
| 0.0009        | 84.2105  | 1600 | 1.6516          | {'precision': 0.8909090909090909, 'recall': 0.8996328029375765, 'f1': 0.8952496954933008, 'number': 817} | {'precision': 0.6132075471698113, 'recall': 0.5462184873949579, 'f1': 0.5777777777777778, 'number': 119}  | {'precision': 0.9070837166513339, 'recall': 0.9155060352831941, 'f1': 0.911275415896488, 'number': 1077}  | 0.8850            | 0.8872         | 0.8861     | 0.8116           |
| 0.0007        | 94.7368  | 1800 | 1.7017          | {'precision': 0.8470319634703196, 'recall': 0.9082007343941249, 'f1': 0.8765505020673362, 'number': 817} | {'precision': 0.6521739130434783, 'recall': 0.5042016806722689, 'f1': 0.5687203791469194, 'number': 119}  | {'precision': 0.8938547486033519, 'recall': 0.8913649025069638, 'f1': 0.8926080892608089, 'number': 1077} | 0.8629            | 0.8753         | 0.8691     | 0.8004           |
| 0.0004        | 105.2632 | 2000 | 1.7304          | {'precision': 0.8624708624708625, 'recall': 0.9057527539779682, 'f1': 0.8835820895522388, 'number': 817} | {'precision': 0.6095238095238096, 'recall': 0.5378151260504201, 'f1': 0.5714285714285715, 'number': 119}  | {'precision': 0.906046511627907, 'recall': 0.904363974001857, 'f1': 0.9052044609665427, 'number': 1077}   | 0.8724            | 0.8833         | 0.8778     | 0.8019           |
| 0.0003        | 115.7895 | 2200 | 1.7230          | {'precision': 0.8723404255319149, 'recall': 0.9033047735618115, 'f1': 0.8875526157546603, 'number': 817} | {'precision': 0.6702127659574468, 'recall': 0.5294117647058824, 'f1': 0.5915492957746479, 'number': 119}  | {'precision': 0.8992740471869328, 'recall': 0.9201485608170845, 'f1': 0.9095915557595228, 'number': 1077} | 0.8776            | 0.8902         | 0.8838     | 0.8049           |
| 0.0002        | 126.3158 | 2400 | 1.7177          | {'precision': 0.8729411764705882, 'recall': 0.9082007343941249, 'f1': 0.8902219556088783, 'number': 817} | {'precision': 0.6421052631578947, 'recall': 0.5126050420168067, 'f1': 0.5700934579439252, 'number': 119}  | {'precision': 0.906021897810219, 'recall': 0.9220055710306406, 'f1': 0.9139438564196963, 'number': 1077}  | 0.8800            | 0.8922         | 0.8860     | 0.8064           |


### Framework versions

- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1