bartowski commited on
Commit
d2e47d1
1 Parent(s): 21ca30f

Llamacpp quants

Browse files
.gitattributes CHANGED
@@ -33,3 +33,27 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ Phi-3.1-mini-128k-instruct-IQ2_M.gguf filter=lfs diff=lfs merge=lfs -text
37
+ Phi-3.1-mini-128k-instruct-IQ2_S.gguf filter=lfs diff=lfs merge=lfs -text
38
+ Phi-3.1-mini-128k-instruct-IQ2_XS.gguf filter=lfs diff=lfs merge=lfs -text
39
+ Phi-3.1-mini-128k-instruct-IQ3_M.gguf filter=lfs diff=lfs merge=lfs -text
40
+ Phi-3.1-mini-128k-instruct-IQ3_XS.gguf filter=lfs diff=lfs merge=lfs -text
41
+ Phi-3.1-mini-128k-instruct-IQ3_XXS.gguf filter=lfs diff=lfs merge=lfs -text
42
+ Phi-3.1-mini-128k-instruct-IQ4_XS.gguf filter=lfs diff=lfs merge=lfs -text
43
+ Phi-3.1-mini-128k-instruct-Q2_K.gguf filter=lfs diff=lfs merge=lfs -text
44
+ Phi-3.1-mini-128k-instruct-Q2_K_L.gguf filter=lfs diff=lfs merge=lfs -text
45
+ Phi-3.1-mini-128k-instruct-Q3_K_L.gguf filter=lfs diff=lfs merge=lfs -text
46
+ Phi-3.1-mini-128k-instruct-Q3_K_M.gguf filter=lfs diff=lfs merge=lfs -text
47
+ Phi-3.1-mini-128k-instruct-Q3_K_S.gguf filter=lfs diff=lfs merge=lfs -text
48
+ Phi-3.1-mini-128k-instruct-Q3_K_XL.gguf filter=lfs diff=lfs merge=lfs -text
49
+ Phi-3.1-mini-128k-instruct-Q4_K_L.gguf filter=lfs diff=lfs merge=lfs -text
50
+ Phi-3.1-mini-128k-instruct-Q4_K_M.gguf filter=lfs diff=lfs merge=lfs -text
51
+ Phi-3.1-mini-128k-instruct-Q4_K_S.gguf filter=lfs diff=lfs merge=lfs -text
52
+ Phi-3.1-mini-128k-instruct-Q5_K_L.gguf filter=lfs diff=lfs merge=lfs -text
53
+ Phi-3.1-mini-128k-instruct-Q5_K_M.gguf filter=lfs diff=lfs merge=lfs -text
54
+ Phi-3.1-mini-128k-instruct-Q5_K_S.gguf filter=lfs diff=lfs merge=lfs -text
55
+ Phi-3.1-mini-128k-instruct-Q6_K.gguf filter=lfs diff=lfs merge=lfs -text
56
+ Phi-3.1-mini-128k-instruct-Q6_K_L.gguf filter=lfs diff=lfs merge=lfs -text
57
+ Phi-3.1-mini-128k-instruct-Q8_0.gguf filter=lfs diff=lfs merge=lfs -text
58
+ Phi-3.1-mini-128k-instruct-f32.gguf filter=lfs diff=lfs merge=lfs -text
59
+ Phi-3.1-mini-128k-instruct.imatrix filter=lfs diff=lfs merge=lfs -text
Phi-3.1-mini-128k-instruct-IQ2_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c61af7d2b429a51ad31697aefc26a9e9cfe92f9c8955d92ebef782ea6d551b04
3
+ size 1316394752
Phi-3.1-mini-128k-instruct-IQ2_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:824dfb8f3a7a14691270b6b0dbef07b6741e56575e5d26a56884227fadf2cd7c
3
+ size 1215731456
Phi-3.1-mini-128k-instruct-IQ2_XS.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:934658cd46f2d4aa21cbf696c44dc411abb0446af297e9f345a3fadd61cc790e
3
+ size 1153036544
Phi-3.1-mini-128k-instruct-IQ3_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:454962193e07539acd0cf3c3382f9cdb55018c5997ce8474a7437ff2a33a1380
3
+ size 1855599872
Phi-3.1-mini-128k-instruct-IQ3_XS.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8bc0a6914a5de9192ae0ee6e03b79b82bdd61a24e2b2b66609ed3d4d1cdcdda
3
+ size 1625175296
Phi-3.1-mini-128k-instruct-IQ3_XXS.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:06c79483ef7d56260507c2b1a08cda7ad597f9c2feb417b9c5114ad85e81a6ce
3
+ size 1513002752
Phi-3.1-mini-128k-instruct-IQ4_XS.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:319849cee6ba75265f0afd2f5a1aa3a30cec864252647503670c03f7e5dec024
3
+ size 2059852544
Phi-3.1-mini-128k-instruct-Q2_K.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9119323ec34b782a175382d5dce47a321286b988add9465a76cb81dd8fb6271b
3
+ size 1416204032
Phi-3.1-mini-128k-instruct-Q2_K_L.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:32421ad56ecb0540ffa69ee029e52cfa5acf86cd237b1986ca5a469bdff9f95b
3
+ size 1512396032
Phi-3.1-mini-128k-instruct-Q3_K_L.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:36b9866aa33c8c5bd38cf9bdd666740a133e6568e108c3f42a1713092665d190
3
+ size 2087597312
Phi-3.1-mini-128k-instruct-Q3_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:78462a6e7e2f04729e07c24009ac866a90d204b608a9e359dee58589bd2b3e4a
3
+ size 1955476736
Phi-3.1-mini-128k-instruct-Q3_K_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fda41749072409924359b8f9a83dce9b159bd4eb11fd1c32c4ac6f9530057c23
3
+ size 1681798400
Phi-3.1-mini-128k-instruct-Q3_K_XL.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7bfbb5d005728b27da8c9526d0650b0428285266ba16d5d0b54e2b9559001bc0
3
+ size 2173785344
Phi-3.1-mini-128k-instruct-Q4_K_L.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cbfec58556edceb6ba2c209ad73a6d7fddd86dbd63c0aec349e1e2a99e9dc5df
3
+ size 2466338048
Phi-3.1-mini-128k-instruct-Q4_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13cfd3360aabac470495b09fd840bab0a2075161c559524847a01abc8940f0af
3
+ size 2393232128
Phi-3.1-mini-128k-instruct-Q4_K_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:82186d52313beff3a4b5f363e43a40694907dc270abc9a5c45e79d59395c9e00
3
+ size 2188759808
Phi-3.1-mini-128k-instruct-Q5_K_L.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:10b0d17f5a4413d7763efedc6ed123f3f8f855871f83ee37e4b8bd2edfe5e6d8
3
+ size 2876069120
Phi-3.1-mini-128k-instruct-Q5_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6dd2e38b37201ad1e46ae8e35b762eb0533c95d49fda9b30bb71192e4bd86a6
3
+ size 2815275776
Phi-3.1-mini-128k-instruct-Q5_K_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:86ffb9f041dd4641e1e5e595191b168e3e1c47e86a906149a2e208769d94437c
3
+ size 2641474304
Phi-3.1-mini-128k-instruct-Q6_K.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cdab3353176ac3144ee4cc6f9209d9e9f5e8c15865201efaa309d14ca6b21b37
3
+ size 3135852800
Phi-3.1-mini-128k-instruct-Q6_K_L.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:749da70a9b15020d67b90db1006ae4faf39e389b2c52d35e77da4c5988a9c0b6
3
+ size 3183564032
Phi-3.1-mini-128k-instruct-Q8_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88d4e98da270b567c3310c27853641d95e5ec050c3f4e020cd36f7e2975e8ae8
3
+ size 4061222144
Phi-3.1-mini-128k-instruct-f32.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18739cc37471f0cace281b82dcbc83bb17c4792f835535e4a051a52be0dd6a39
3
+ size 15285056480
Phi-3.1-mini-128k-instruct.imatrix ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f98ff94ddb350fa19d9f1f42b24f969f5c06e385a5bcb0ffee8204b90184a722
3
+ size 2232617
README.md ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ license_link: https://huggingface.co/microsoft/Phi-3-mini-128k-instruct/resolve/main/LICENSE
4
+
5
+ language:
6
+ - en
7
+ pipeline_tag: text-generation
8
+ tags:
9
+ - nlp
10
+ - code
11
+ widget:
12
+ - messages:
13
+ - role: user
14
+ content: Can you provide ways to eat combinations of bananas and dragonfruits?
15
+ quantized_by: bartowski
16
+ ---
17
+
18
+ ## Llamacpp imatrix Quantizations of Phi-3.1-mini-128k-instruct
19
+
20
+ Using <a href="https://github.com/ggerganov/llama.cpp/">llama.cpp</a> release <a href="https://github.com/ggerganov/llama.cpp/releases/tag/b3291">b3291</a> for quantization.
21
+
22
+ Original model: https://huggingface.co/microsoft/Phi-3-mini-128k-instruct
23
+
24
+ All quants made using imatrix option with dataset from [here](https://gist.github.com/bartowski1182/eb213dccb3571f863da82e99418f81e8)
25
+
26
+ ## Prompt format
27
+
28
+ ```
29
+ <|system|> {system_prompt}<|end|><|user|> {prompt}<|end|><|assistant|>
30
+ ```
31
+
32
+ ## Download a file (not the whole branch) from below:
33
+
34
+ | Filename | Quant type | File Size | Description |
35
+ | -------- | ---------- | --------- | ----------- |
36
+ | [Phi-3.1-mini-128k-instruct-Q8_0.gguf](https://huggingface.co/bartowski/Phi-3.1-mini-128k-instruct-GGUF/blob/main/Phi-3.1-mini-128k-instruct-Q8_0.gguf) | Q8_0 | 4.06GB | Extremely high quality, generally unneeded but max available quant. |
37
+ | [Phi-3.1-mini-128k-instruct-Q6_K_L.gguf](https://huggingface.co/bartowski/Phi-3.1-mini-128k-instruct-GGUF/blob/main/Phi-3.1-mini-128k-instruct-Q6_K_L.gguf) | Q6_K_L | 3.18GB | Uses Q8_0 for embed and output weights. Very high quality, near perfect, *recommended*. |
38
+ | [Phi-3.1-mini-128k-instruct-Q6_K.gguf](https://huggingface.co/bartowski/Phi-3.1-mini-128k-instruct-GGUF/blob/main/Phi-3.1-mini-128k-instruct-Q6_K.gguf) | Q6_K | 3.13GB | Very high quality, near perfect, *recommended*. |
39
+ | [Phi-3.1-mini-128k-instruct-Q5_K_L.gguf](https://huggingface.co/bartowski/Phi-3.1-mini-128k-instruct-GGUF/blob/main/Phi-3.1-mini-128k-instruct-Q5_K_L.gguf) | Q5_K_L | 2.87GB | Uses Q8_0 for embed and output weights. High quality, *recommended*. |
40
+ | [Phi-3.1-mini-128k-instruct-Q5_K_M.gguf](https://huggingface.co/bartowski/Phi-3.1-mini-128k-instruct-GGUF/blob/main/Phi-3.1-mini-128k-instruct-Q5_K_M.gguf) | Q5_K_M | 2.81GB | High quality, *recommended*. |
41
+ | [Phi-3.1-mini-128k-instruct-Q5_K_S.gguf](https://huggingface.co/bartowski/Phi-3.1-mini-128k-instruct-GGUF/blob/main/Phi-3.1-mini-128k-instruct-Q5_K_S.gguf) | Q5_K_S | 2.64GB | High quality, *recommended*. |
42
+ | [Phi-3.1-mini-128k-instruct-Q4_K_L.gguf](https://huggingface.co/bartowski/Phi-3.1-mini-128k-instruct-GGUF/blob/main/Phi-3.1-mini-128k-instruct-Q4_K_L.gguf) | Q4_K_L | 2.46GB | Uses Q8_0 for embed and output weights. Good quality, uses about 4.83 bits per weight, *recommended*. |
43
+ | [Phi-3.1-mini-128k-instruct-Q4_K_M.gguf](https://huggingface.co/bartowski/Phi-3.1-mini-128k-instruct-GGUF/blob/main/Phi-3.1-mini-128k-instruct-Q4_K_M.gguf) | Q4_K_M | 2.39GB | Good quality, uses about 4.83 bits per weight, *recommended*. |
44
+ | [Phi-3.1-mini-128k-instruct-Q4_K_S.gguf](https://huggingface.co/bartowski/Phi-3.1-mini-128k-instruct-GGUF/blob/main/Phi-3.1-mini-128k-instruct-Q4_K_S.gguf) | Q4_K_S | 2.18GB | Slightly lower quality with more space savings, *recommended*. |
45
+ | [Phi-3.1-mini-128k-instruct-IQ4_XS.gguf](https://huggingface.co/bartowski/Phi-3.1-mini-128k-instruct-GGUF/blob/main/Phi-3.1-mini-128k-instruct-IQ4_XS.gguf) | IQ4_XS | 2.05GB | Decent quality, smaller than Q4_K_S with similar performance, *recommended*. |
46
+ | [Phi-3.1-mini-128k-instruct-Q3_K_XL.gguf](https://huggingface.co/bartowski/Phi-3.1-mini-128k-instruct-GGUF/blob/main/Phi-3.1-mini-128k-instruct-Q3_K_XL.gguf) | Q3_K_XL | 2.17GB | Uses Q8_0 for embed and output weights. Lower quality but usable, good for low RAM availability. |
47
+ | [Phi-3.1-mini-128k-instruct-Q3_K_L.gguf](https://huggingface.co/bartowski/Phi-3.1-mini-128k-instruct-GGUF/blob/main/Phi-3.1-mini-128k-instruct-Q3_K_L.gguf) | Q3_K_L | 2.08GB | Lower quality but usable, good for low RAM availability. |
48
+ | [Phi-3.1-mini-128k-instruct-Q3_K_M.gguf](https://huggingface.co/bartowski/Phi-3.1-mini-128k-instruct-GGUF/blob/main/Phi-3.1-mini-128k-instruct-Q3_K_M.gguf) | Q3_K_M | 1.95GB | Even lower quality. |
49
+ | [Phi-3.1-mini-128k-instruct-IQ3_M.gguf](https://huggingface.co/bartowski/Phi-3.1-mini-128k-instruct-GGUF/blob/main/Phi-3.1-mini-128k-instruct-IQ3_M.gguf) | IQ3_M | 1.85GB | Medium-low quality, new method with decent performance comparable to Q3_K_M. |
50
+ | [Phi-3.1-mini-128k-instruct-Q3_K_S.gguf](https://huggingface.co/bartowski/Phi-3.1-mini-128k-instruct-GGUF/blob/main/Phi-3.1-mini-128k-instruct-Q3_K_S.gguf) | Q3_K_S | 1.68GB | Low quality, not recommended. |
51
+ | [Phi-3.1-mini-128k-instruct-IQ3_XS.gguf](https://huggingface.co/bartowski/Phi-3.1-mini-128k-instruct-GGUF/blob/main/Phi-3.1-mini-128k-instruct-IQ3_XS.gguf) | IQ3_XS | 1.62GB | Lower quality, new method with decent performance, slightly better than Q3_K_S. |
52
+ | [Phi-3.1-mini-128k-instruct-IQ3_XXS.gguf](https://huggingface.co/bartowski/Phi-3.1-mini-128k-instruct-GGUF/blob/main/Phi-3.1-mini-128k-instruct-IQ3_XXS.gguf) | IQ3_XXS | 1.51GB | Lower quality, new method with decent performance, comparable to Q3 quants. |
53
+ | [Phi-3.1-mini-128k-instruct-Q2_K_L.gguf](https://huggingface.co/bartowski/Phi-3.1-mini-128k-instruct-GGUF/blob/main/Phi-3.1-mini-128k-instruct-Q2_K_L.gguf) | Q2_K_L | 1.51GB | Uses Q8_0 for embed and output weights. Very low quality but surprisingly usable. |
54
+ | [Phi-3.1-mini-128k-instruct-Q2_K.gguf](https://huggingface.co/bartowski/Phi-3.1-mini-128k-instruct-GGUF/blob/main/Phi-3.1-mini-128k-instruct-Q2_K.gguf) | Q2_K | 1.41GB | Very low quality but surprisingly usable. |
55
+ | [Phi-3.1-mini-128k-instruct-IQ2_M.gguf](https://huggingface.co/bartowski/Phi-3.1-mini-128k-instruct-GGUF/blob/main/Phi-3.1-mini-128k-instruct-IQ2_M.gguf) | IQ2_M | 1.31GB | Very low quality, uses SOTA techniques to also be surprisingly usable. |
56
+ | [Phi-3.1-mini-128k-instruct-IQ2_S.gguf](https://huggingface.co/bartowski/Phi-3.1-mini-128k-instruct-GGUF/blob/main/Phi-3.1-mini-128k-instruct-IQ2_S.gguf) | IQ2_S | 1.21GB | Very low quality, uses SOTA techniques to be usable. |
57
+ | [Phi-3.1-mini-128k-instruct-IQ2_XS.gguf](https://huggingface.co/bartowski/Phi-3.1-mini-128k-instruct-GGUF/blob/main/Phi-3.1-mini-128k-instruct-IQ2_XS.gguf) | IQ2_XS | 1.15GB | Very low quality, uses SOTA techniques to be usable. |
58
+
59
+ ## Credits
60
+
61
+ Thank you kalomaze and Dampf for assistance in creating the imatrix calibration dataset
62
+
63
+ Thank you ZeroWw for the inspiration to experiment with embed/output
64
+
65
+ ## Downloading using huggingface-cli
66
+
67
+ First, make sure you have hugginface-cli installed:
68
+
69
+ ```
70
+ pip install -U "huggingface_hub[cli]"
71
+ ```
72
+
73
+ Then, you can target the specific file you want:
74
+
75
+ ```
76
+ huggingface-cli download bartowski/Phi-3.1-mini-128k-instruct-GGUF --include "Phi-3.1-mini-128k-instruct-Q4_K_M.gguf" --local-dir ./
77
+ ```
78
+
79
+ If the model is bigger than 50GB, it will have been split into multiple files. In order to download them all to a local folder, run:
80
+
81
+ ```
82
+ huggingface-cli download bartowski/Phi-3.1-mini-128k-instruct-GGUF --include "Phi-3.1-mini-128k-instruct-Q8_0.gguf/*" --local-dir Phi-3.1-mini-128k-instruct-Q8_0
83
+ ```
84
+
85
+ You can either specify a new local-dir (Phi-3.1-mini-128k-instruct-Q8_0) or download them all in place (./)
86
+
87
+ ## Which file should I choose?
88
+
89
+ A great write up with charts showing various performances is provided by Artefact2 [here](https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9)
90
+
91
+ The first thing to figure out is how big a model you can run. To do this, you'll need to figure out how much RAM and/or VRAM you have.
92
+
93
+ If you want your model running as FAST as possible, you'll want to fit the whole thing on your GPU's VRAM. Aim for a quant with a file size 1-2GB smaller than your GPU's total VRAM.
94
+
95
+ If you want the absolute maximum quality, add both your system RAM and your GPU's VRAM together, then similarly grab a quant with a file size 1-2GB Smaller than that total.
96
+
97
+ Next, you'll need to decide if you want to use an 'I-quant' or a 'K-quant'.
98
+
99
+ If you don't want to think too much, grab one of the K-quants. These are in format 'QX_K_X', like Q5_K_M.
100
+
101
+ If you want to get more into the weeds, you can check out this extremely useful feature chart:
102
+
103
+ [llama.cpp feature matrix](https://github.com/ggerganov/llama.cpp/wiki/Feature-matrix)
104
+
105
+ But basically, if you're aiming for below Q4, and you're running cuBLAS (Nvidia) or rocBLAS (AMD), you should look towards the I-quants. These are in format IQX_X, like IQ3_M. These are newer and offer better performance for their size.
106
+
107
+ These I-quants can also be used on CPU and Apple Metal, but will be slower than their K-quant equivalent, so speed vs performance is a tradeoff you'll have to decide.
108
+
109
+ The I-quants are *not* compatible with Vulcan, which is also AMD, so if you have an AMD card double check if you're using the rocBLAS build or the Vulcan build. At the time of writing this, LM Studio has a preview with ROCm support, and other inference engines have specific builds for ROCm.
110
+
111
+ Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski