Update metadata with huggingface_hub
Browse files
README.md
CHANGED
@@ -1,7 +1,43 @@
|
|
1 |
-
|
2 |
---
|
3 |
-
|
|
|
4 |
pipeline_tag: text-generation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
---
|
6 |
|
7 |
## Llamacpp imatrix Quantizations of NuminaMath-7B-TIR
|
|
|
|
|
1 |
---
|
2 |
+
base_model: AI-MO/NuminaMath-7B-TIR
|
3 |
+
license: apache-2.0
|
4 |
pipeline_tag: text-generation
|
5 |
+
tags:
|
6 |
+
- alignment-handbook
|
7 |
+
- generated_from_trainer
|
8 |
+
quantized_by: bartowski
|
9 |
+
widget:
|
10 |
+
- example_title: Math problem
|
11 |
+
messages:
|
12 |
+
- role: user
|
13 |
+
content: For how many values of the constant $k$ will the polynomial $x^{2}+kx+36$
|
14 |
+
have two distinct integer roots?
|
15 |
+
output:
|
16 |
+
text: '### Solution: 1. For the polynomial \\( x^2 + kx + 36 \\) to have two distinct
|
17 |
+
integer roots, let''s denote these roots by \\( r_1 \\) and \\( r_2 \\).\n\n2.
|
18 |
+
According to Vieta''s formulas, the sum of the roots \\( r_1 + r_2 \\) is equal
|
19 |
+
to \\(-k\\), and the product of the roots \\( r_1 \\cdot r_2 \\) is equal to
|
20 |
+
36.\n\n3. To find the distinct integer pairs \\((r_1, r_2)\\) whose product
|
21 |
+
is 36, we need to determine all pairs of integers \\((r_1, r_2)\\) such that
|
22 |
+
\\( r_1 \\cdot r_2 = 36 \\) and \\( r_1 \\neq r_2 \\).\n\n4. From the equation
|
23 |
+
\\( r_1 + r_2 = -k \\), for each valid pair \\((r_1, r_2)\\), we can compute
|
24 |
+
the corresponding value of \\( k \\).\n\n5. Finally, since we need the polynomial
|
25 |
+
to have two distinct integer roots, we need to ensure that \\( r_1 \\) and \\(
|
26 |
+
r_2 \\) are distinct.\n\nLet''s start by finding all pairs \\((r_1, r_2)\\)
|
27 |
+
such that \\( r_1 \\cdot r_2 = 36 \\). We''ll then determine the values of \\(
|
28 |
+
k \\) and ensure the roots are distinct.\n```python\nimport itertools\n\n# Find
|
29 |
+
all pairs (r1, r2) such that r1 * r2 = 36\nproduct_36 = 36\nfactor_pairs = []\n\nfor
|
30 |
+
i in range(1, product_36 + 1):\n if product_36 % i == 0:\n pair = (i, product_36
|
31 |
+
// i)\n if pair[0] != pair[1]: # Ensure distinct pairs\n factor_pairs.append(pair)\n\n#
|
32 |
+
Calculate k for each pair and ensure distinct integer roots\nvalid_k_values
|
33 |
+
= set()\nfor r1, r2 in factor_pairs:\n if r1 != r2:\n k = -(r1 + r2)\n valid_k_values.add(k)\n\nprint((len(valid_k_values),
|
34 |
+
sorted(valid_k_values)))\n```\n```output\n(4, [-37, -20, -15, -13])\n```\nThe
|
35 |
+
distinct integer values of \\( k \\) that make the polynomial \\( x^2 + kx +
|
36 |
+
36 \\) have two distinct integer roots are \\(-37, -20, -15, \\text{and} -13\\).\n\nTherefore,
|
37 |
+
the number of such values of \\( k \\) is:\n\n\\[\n\\boxed{4}\n\\]\n'
|
38 |
+
model-index:
|
39 |
+
- name: NuminaMath-7B-TIR
|
40 |
+
results: []
|
41 |
---
|
42 |
|
43 |
## Llamacpp imatrix Quantizations of NuminaMath-7B-TIR
|