bartowski commited on
Commit
6dd27ad
1 Parent(s): 8c4b38f

Update metadata with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +38 -2
README.md CHANGED
@@ -1,7 +1,43 @@
1
-
2
  ---
3
- quantized_by: bartowski
 
4
  pipeline_tag: text-generation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  ---
6
 
7
  ## Llamacpp imatrix Quantizations of NuminaMath-7B-TIR
 
 
1
  ---
2
+ base_model: AI-MO/NuminaMath-7B-TIR
3
+ license: apache-2.0
4
  pipeline_tag: text-generation
5
+ tags:
6
+ - alignment-handbook
7
+ - generated_from_trainer
8
+ quantized_by: bartowski
9
+ widget:
10
+ - example_title: Math problem
11
+ messages:
12
+ - role: user
13
+ content: For how many values of the constant $k$ will the polynomial $x^{2}+kx+36$
14
+ have two distinct integer roots?
15
+ output:
16
+ text: '### Solution: 1. For the polynomial \\( x^2 + kx + 36 \\) to have two distinct
17
+ integer roots, let''s denote these roots by \\( r_1 \\) and \\( r_2 \\).\n\n2.
18
+ According to Vieta''s formulas, the sum of the roots \\( r_1 + r_2 \\) is equal
19
+ to \\(-k\\), and the product of the roots \\( r_1 \\cdot r_2 \\) is equal to
20
+ 36.\n\n3. To find the distinct integer pairs \\((r_1, r_2)\\) whose product
21
+ is 36, we need to determine all pairs of integers \\((r_1, r_2)\\) such that
22
+ \\( r_1 \\cdot r_2 = 36 \\) and \\( r_1 \\neq r_2 \\).\n\n4. From the equation
23
+ \\( r_1 + r_2 = -k \\), for each valid pair \\((r_1, r_2)\\), we can compute
24
+ the corresponding value of \\( k \\).\n\n5. Finally, since we need the polynomial
25
+ to have two distinct integer roots, we need to ensure that \\( r_1 \\) and \\(
26
+ r_2 \\) are distinct.\n\nLet''s start by finding all pairs \\((r_1, r_2)\\)
27
+ such that \\( r_1 \\cdot r_2 = 36 \\). We''ll then determine the values of \\(
28
+ k \\) and ensure the roots are distinct.\n```python\nimport itertools\n\n# Find
29
+ all pairs (r1, r2) such that r1 * r2 = 36\nproduct_36 = 36\nfactor_pairs = []\n\nfor
30
+ i in range(1, product_36 + 1):\n if product_36 % i == 0:\n pair = (i, product_36
31
+ // i)\n if pair[0] != pair[1]: # Ensure distinct pairs\n factor_pairs.append(pair)\n\n#
32
+ Calculate k for each pair and ensure distinct integer roots\nvalid_k_values
33
+ = set()\nfor r1, r2 in factor_pairs:\n if r1 != r2:\n k = -(r1 + r2)\n valid_k_values.add(k)\n\nprint((len(valid_k_values),
34
+ sorted(valid_k_values)))\n```\n```output\n(4, [-37, -20, -15, -13])\n```\nThe
35
+ distinct integer values of \\( k \\) that make the polynomial \\( x^2 + kx +
36
+ 36 \\) have two distinct integer roots are \\(-37, -20, -15, \\text{and} -13\\).\n\nTherefore,
37
+ the number of such values of \\( k \\) is:\n\n\\[\n\\boxed{4}\n\\]\n'
38
+ model-index:
39
+ - name: NuminaMath-7B-TIR
40
+ results: []
41
  ---
42
 
43
  ## Llamacpp imatrix Quantizations of NuminaMath-7B-TIR