bartowski commited on
Commit
aeb350c
·
verified ·
1 Parent(s): 40cbaa4

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +23 -21
README.md CHANGED
@@ -1,15 +1,11 @@
1
  ---
2
- base_model: Sao10K/MN-12B-Lyra-v1
3
- language:
4
- - en
5
- license: cc-by-nc-4.0
6
- pipeline_tag: text-generation
7
  quantized_by: bartowski
 
8
  ---
9
 
10
  ## Llamacpp imatrix Quantizations of MN-12B-Lyra-v1
11
 
12
- Using <a href="https://github.com/ggerganov/llama.cpp/">llama.cpp</a> release <a href="https://github.com/ggerganov/llama.cpp/releases/tag/b3509">b3509</a> for quantization.
13
 
14
  Original model: https://huggingface.co/Sao10K/MN-12B-Lyra-v1
15
 
@@ -19,22 +15,18 @@ Run them in [LM Studio](https://lmstudio.ai/)
19
 
20
  ## Prompt format
21
 
22
- No chat template specified so default is used. This may be incorrect, check original model card for details.
23
 
24
- ```
25
- <|im_start|>system
26
- {system_prompt}<|im_end|>
27
- <|im_start|>user
28
- {prompt}<|im_end|>
29
- <|im_start|>assistant
30
 
31
- ```
32
 
33
  ## Download a file (not the whole branch) from below:
34
 
35
  | Filename | Quant type | File Size | Split | Description |
36
  | -------- | ---------- | --------- | ----- | ----------- |
37
  | [MN-12B-Lyra-v1-f32.gguf](https://huggingface.co/bartowski/MN-12B-Lyra-v1-GGUF/blob/main/MN-12B-Lyra-v1-f32.gguf) | f32 | 49.00GB | false | Full F32 weights. |
 
38
  | [MN-12B-Lyra-v1-Q8_0.gguf](https://huggingface.co/bartowski/MN-12B-Lyra-v1-GGUF/blob/main/MN-12B-Lyra-v1-Q8_0.gguf) | Q8_0 | 13.02GB | false | Extremely high quality, generally unneeded but max available quant. |
39
  | [MN-12B-Lyra-v1-Q6_K_L.gguf](https://huggingface.co/bartowski/MN-12B-Lyra-v1-GGUF/blob/main/MN-12B-Lyra-v1-Q6_K_L.gguf) | Q6_K_L | 10.38GB | false | Uses Q8_0 for embed and output weights. Very high quality, near perfect, *recommended*. |
40
  | [MN-12B-Lyra-v1-Q6_K.gguf](https://huggingface.co/bartowski/MN-12B-Lyra-v1-GGUF/blob/main/MN-12B-Lyra-v1-Q6_K.gguf) | Q6_K | 10.06GB | false | Very high quality, near perfect, *recommended*. |
@@ -45,6 +37,9 @@ No chat template specified so default is used. This may be incorrect, check orig
45
  | [MN-12B-Lyra-v1-Q4_K_M.gguf](https://huggingface.co/bartowski/MN-12B-Lyra-v1-GGUF/blob/main/MN-12B-Lyra-v1-Q4_K_M.gguf) | Q4_K_M | 7.48GB | false | Good quality, default size for must use cases, *recommended*. |
46
  | [MN-12B-Lyra-v1-Q3_K_XL.gguf](https://huggingface.co/bartowski/MN-12B-Lyra-v1-GGUF/blob/main/MN-12B-Lyra-v1-Q3_K_XL.gguf) | Q3_K_XL | 7.15GB | false | Uses Q8_0 for embed and output weights. Lower quality but usable, good for low RAM availability. |
47
  | [MN-12B-Lyra-v1-Q4_K_S.gguf](https://huggingface.co/bartowski/MN-12B-Lyra-v1-GGUF/blob/main/MN-12B-Lyra-v1-Q4_K_S.gguf) | Q4_K_S | 7.12GB | false | Slightly lower quality with more space savings, *recommended*. |
 
 
 
48
  | [MN-12B-Lyra-v1-IQ4_XS.gguf](https://huggingface.co/bartowski/MN-12B-Lyra-v1-GGUF/blob/main/MN-12B-Lyra-v1-IQ4_XS.gguf) | IQ4_XS | 6.74GB | false | Decent quality, smaller than Q4_K_S with similar performance, *recommended*. |
49
  | [MN-12B-Lyra-v1-Q3_K_L.gguf](https://huggingface.co/bartowski/MN-12B-Lyra-v1-GGUF/blob/main/MN-12B-Lyra-v1-Q3_K_L.gguf) | Q3_K_L | 6.56GB | false | Lower quality but usable, good for low RAM availability. |
50
  | [MN-12B-Lyra-v1-Q3_K_M.gguf](https://huggingface.co/bartowski/MN-12B-Lyra-v1-GGUF/blob/main/MN-12B-Lyra-v1-Q3_K_M.gguf) | Q3_K_M | 6.08GB | false | Low quality. |
@@ -63,12 +58,6 @@ Some say that this improves the quality, others don't notice any difference. If
63
 
64
  Thanks!
65
 
66
- ## Credits
67
-
68
- Thank you kalomaze and Dampf for assistance in creating the imatrix calibration dataset
69
-
70
- Thank you ZeroWw for the inspiration to experiment with embed/output
71
-
72
  ## Downloading using huggingface-cli
73
 
74
  First, make sure you have hugginface-cli installed:
@@ -91,6 +80,14 @@ huggingface-cli download bartowski/MN-12B-Lyra-v1-GGUF --include "MN-12B-Lyra-v1
91
 
92
  You can either specify a new local-dir (MN-12B-Lyra-v1-Q8_0) or download them all in place (./)
93
 
 
 
 
 
 
 
 
 
94
  ## Which file should I choose?
95
 
96
  A great write up with charts showing various performances is provided by Artefact2 [here](https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9)
@@ -115,5 +112,10 @@ These I-quants can also be used on CPU and Apple Metal, but will be slower than
115
 
116
  The I-quants are *not* compatible with Vulcan, which is also AMD, so if you have an AMD card double check if you're using the rocBLAS build or the Vulcan build. At the time of writing this, LM Studio has a preview with ROCm support, and other inference engines have specific builds for ROCm.
117
 
118
- Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
119
 
 
 
 
 
 
 
1
  ---
 
 
 
 
 
2
  quantized_by: bartowski
3
+ pipeline_tag: text-generation
4
  ---
5
 
6
  ## Llamacpp imatrix Quantizations of MN-12B-Lyra-v1
7
 
8
+ Using <a href="https://github.com/ggerganov/llama.cpp/">llama.cpp</a> release <a href="https://github.com/ggerganov/llama.cpp/releases/tag/b3991">b3991</a> for quantization.
9
 
10
  Original model: https://huggingface.co/Sao10K/MN-12B-Lyra-v1
11
 
 
15
 
16
  ## Prompt format
17
 
18
+ No prompt format found, check original model page
19
 
20
+ ## What's new:
 
 
 
 
 
21
 
22
+ Adding ARM quants
23
 
24
  ## Download a file (not the whole branch) from below:
25
 
26
  | Filename | Quant type | File Size | Split | Description |
27
  | -------- | ---------- | --------- | ----- | ----------- |
28
  | [MN-12B-Lyra-v1-f32.gguf](https://huggingface.co/bartowski/MN-12B-Lyra-v1-GGUF/blob/main/MN-12B-Lyra-v1-f32.gguf) | f32 | 49.00GB | false | Full F32 weights. |
29
+ | [MN-12B-Lyra-v1-f32.gguf](https://huggingface.co/bartowski/MN-12B-Lyra-v1-GGUF/blob/main/MN-12B-Lyra-v1-f32.gguf) | f32 | 49.00GB | false | Full F32 weights. |
30
  | [MN-12B-Lyra-v1-Q8_0.gguf](https://huggingface.co/bartowski/MN-12B-Lyra-v1-GGUF/blob/main/MN-12B-Lyra-v1-Q8_0.gguf) | Q8_0 | 13.02GB | false | Extremely high quality, generally unneeded but max available quant. |
31
  | [MN-12B-Lyra-v1-Q6_K_L.gguf](https://huggingface.co/bartowski/MN-12B-Lyra-v1-GGUF/blob/main/MN-12B-Lyra-v1-Q6_K_L.gguf) | Q6_K_L | 10.38GB | false | Uses Q8_0 for embed and output weights. Very high quality, near perfect, *recommended*. |
32
  | [MN-12B-Lyra-v1-Q6_K.gguf](https://huggingface.co/bartowski/MN-12B-Lyra-v1-GGUF/blob/main/MN-12B-Lyra-v1-Q6_K.gguf) | Q6_K | 10.06GB | false | Very high quality, near perfect, *recommended*. |
 
37
  | [MN-12B-Lyra-v1-Q4_K_M.gguf](https://huggingface.co/bartowski/MN-12B-Lyra-v1-GGUF/blob/main/MN-12B-Lyra-v1-Q4_K_M.gguf) | Q4_K_M | 7.48GB | false | Good quality, default size for must use cases, *recommended*. |
38
  | [MN-12B-Lyra-v1-Q3_K_XL.gguf](https://huggingface.co/bartowski/MN-12B-Lyra-v1-GGUF/blob/main/MN-12B-Lyra-v1-Q3_K_XL.gguf) | Q3_K_XL | 7.15GB | false | Uses Q8_0 for embed and output weights. Lower quality but usable, good for low RAM availability. |
39
  | [MN-12B-Lyra-v1-Q4_K_S.gguf](https://huggingface.co/bartowski/MN-12B-Lyra-v1-GGUF/blob/main/MN-12B-Lyra-v1-Q4_K_S.gguf) | Q4_K_S | 7.12GB | false | Slightly lower quality with more space savings, *recommended*. |
40
+ | [MN-12B-Lyra-v1-Q4_0_8_8.gguf](https://huggingface.co/bartowski/MN-12B-Lyra-v1-GGUF/blob/main/MN-12B-Lyra-v1-Q4_0_8_8.gguf) | Q4_0_8_8 | 7.07GB | false | Optimized for ARM inference. Requires 'sve' support (see link below). *Don't use on Mac or Windows*. |
41
+ | [MN-12B-Lyra-v1-Q4_0_4_8.gguf](https://huggingface.co/bartowski/MN-12B-Lyra-v1-GGUF/blob/main/MN-12B-Lyra-v1-Q4_0_4_8.gguf) | Q4_0_4_8 | 7.07GB | false | Optimized for ARM inference. Requires 'i8mm' support (see link below). *Don't use on Mac or Windows*. |
42
+ | [MN-12B-Lyra-v1-Q4_0_4_4.gguf](https://huggingface.co/bartowski/MN-12B-Lyra-v1-GGUF/blob/main/MN-12B-Lyra-v1-Q4_0_4_4.gguf) | Q4_0_4_4 | 7.07GB | false | Optimized for ARM inference. Should work well on all ARM chips, pick this if you're unsure. *Don't use on Mac or Windows*. |
43
  | [MN-12B-Lyra-v1-IQ4_XS.gguf](https://huggingface.co/bartowski/MN-12B-Lyra-v1-GGUF/blob/main/MN-12B-Lyra-v1-IQ4_XS.gguf) | IQ4_XS | 6.74GB | false | Decent quality, smaller than Q4_K_S with similar performance, *recommended*. |
44
  | [MN-12B-Lyra-v1-Q3_K_L.gguf](https://huggingface.co/bartowski/MN-12B-Lyra-v1-GGUF/blob/main/MN-12B-Lyra-v1-Q3_K_L.gguf) | Q3_K_L | 6.56GB | false | Lower quality but usable, good for low RAM availability. |
45
  | [MN-12B-Lyra-v1-Q3_K_M.gguf](https://huggingface.co/bartowski/MN-12B-Lyra-v1-GGUF/blob/main/MN-12B-Lyra-v1-Q3_K_M.gguf) | Q3_K_M | 6.08GB | false | Low quality. |
 
58
 
59
  Thanks!
60
 
 
 
 
 
 
 
61
  ## Downloading using huggingface-cli
62
 
63
  First, make sure you have hugginface-cli installed:
 
80
 
81
  You can either specify a new local-dir (MN-12B-Lyra-v1-Q8_0) or download them all in place (./)
82
 
83
+ ## Q4_0_X_X
84
+
85
+ These are *NOT* for Metal (Apple) offloading, only ARM chips.
86
+
87
+ If you're using an ARM chip, the Q4_0_X_X quants will have a substantial speedup. Check out Q4_0_4_4 speed comparisons [on the original pull request](https://github.com/ggerganov/llama.cpp/pull/5780#pullrequestreview-21657544660)
88
+
89
+ To check which one would work best for your ARM chip, you can check [AArch64 SoC features](https://gpages.juszkiewicz.com.pl/arm-socs-table/arm-socs.html) (thanks EloyOn!).
90
+
91
  ## Which file should I choose?
92
 
93
  A great write up with charts showing various performances is provided by Artefact2 [here](https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9)
 
112
 
113
  The I-quants are *not* compatible with Vulcan, which is also AMD, so if you have an AMD card double check if you're using the rocBLAS build or the Vulcan build. At the time of writing this, LM Studio has a preview with ROCm support, and other inference engines have specific builds for ROCm.
114
 
115
+ ## Credits
116
 
117
+ Thank you kalomaze and Dampf for assistance in creating the imatrix calibration dataset
118
+
119
+ Thank you ZeroWw for the inspiration to experiment with embed/output
120
+
121
+ Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski