barisaydin
commited on
Commit
·
6999a59
1
Parent(s):
485ec9c
Upload folder using huggingface_hub
Browse files- .DS_Store +0 -0
- .gitattributes +3 -0
- 1_Pooling/config.json +7 -0
- README.md +3085 -0
- all.jsonl +3 -0
- config.json +26 -0
- eval_results.txt +2 -0
- modules.json +14 -0
- pytorch_model.bin +3 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +15 -0
- tokenizer.json +3 -0
- tokenizer_config.json +22 -0
- unigram.json +3 -0
.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
.gitattributes
CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
37 |
+
unigram.json filter=lfs diff=lfs merge=lfs -text
|
38 |
+
all.jsonl filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 384,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
README.md
ADDED
@@ -0,0 +1,3085 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pipeline_tag: sentence-similarity
|
3 |
+
license: apache-2.0
|
4 |
+
tags:
|
5 |
+
- text2vec
|
6 |
+
- feature-extraction
|
7 |
+
- sentence-similarity
|
8 |
+
- transformers
|
9 |
+
- mteb
|
10 |
+
datasets:
|
11 |
+
- >-
|
12 |
+
https://huggingface.co/datasets/shibing624/nli-zh-all/tree/main/text2vec-base-multilingual-dataset
|
13 |
+
language:
|
14 |
+
- zh
|
15 |
+
- en
|
16 |
+
- de
|
17 |
+
- fr
|
18 |
+
- it
|
19 |
+
- nl
|
20 |
+
- pt
|
21 |
+
- pl
|
22 |
+
- ru
|
23 |
+
metrics:
|
24 |
+
- spearmanr
|
25 |
+
library_name: transformers
|
26 |
+
model-index:
|
27 |
+
- name: text2vec-base-multilingual
|
28 |
+
results:
|
29 |
+
- task:
|
30 |
+
type: Classification
|
31 |
+
dataset:
|
32 |
+
type: mteb/amazon_counterfactual
|
33 |
+
name: MTEB AmazonCounterfactualClassification (en)
|
34 |
+
config: en
|
35 |
+
split: test
|
36 |
+
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
|
37 |
+
metrics:
|
38 |
+
- type: accuracy
|
39 |
+
value: 70.97014925373134
|
40 |
+
- type: ap
|
41 |
+
value: 33.95151328318672
|
42 |
+
- type: f1
|
43 |
+
value: 65.14740155705596
|
44 |
+
- task:
|
45 |
+
type: Classification
|
46 |
+
dataset:
|
47 |
+
type: mteb/amazon_counterfactual
|
48 |
+
name: MTEB AmazonCounterfactualClassification (de)
|
49 |
+
config: de
|
50 |
+
split: test
|
51 |
+
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
|
52 |
+
metrics:
|
53 |
+
- type: accuracy
|
54 |
+
value: 68.69379014989293
|
55 |
+
- type: ap
|
56 |
+
value: 79.68277579733802
|
57 |
+
- type: f1
|
58 |
+
value: 66.54960052336921
|
59 |
+
- task:
|
60 |
+
type: Classification
|
61 |
+
dataset:
|
62 |
+
type: mteb/amazon_counterfactual
|
63 |
+
name: MTEB AmazonCounterfactualClassification (en-ext)
|
64 |
+
config: en-ext
|
65 |
+
split: test
|
66 |
+
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
|
67 |
+
metrics:
|
68 |
+
- type: accuracy
|
69 |
+
value: 70.90704647676162
|
70 |
+
- type: ap
|
71 |
+
value: 20.747518928580437
|
72 |
+
- type: f1
|
73 |
+
value: 58.64365465884924
|
74 |
+
- task:
|
75 |
+
type: Classification
|
76 |
+
dataset:
|
77 |
+
type: mteb/amazon_counterfactual
|
78 |
+
name: MTEB AmazonCounterfactualClassification (ja)
|
79 |
+
config: ja
|
80 |
+
split: test
|
81 |
+
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
|
82 |
+
metrics:
|
83 |
+
- type: accuracy
|
84 |
+
value: 61.605995717344754
|
85 |
+
- type: ap
|
86 |
+
value: 14.135974879487028
|
87 |
+
- type: f1
|
88 |
+
value: 49.980224800472136
|
89 |
+
- task:
|
90 |
+
type: Classification
|
91 |
+
dataset:
|
92 |
+
type: mteb/amazon_polarity
|
93 |
+
name: MTEB AmazonPolarityClassification
|
94 |
+
config: default
|
95 |
+
split: test
|
96 |
+
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
|
97 |
+
metrics:
|
98 |
+
- type: accuracy
|
99 |
+
value: 66.103375
|
100 |
+
- type: ap
|
101 |
+
value: 61.10087197664471
|
102 |
+
- type: f1
|
103 |
+
value: 65.75198509894145
|
104 |
+
- task:
|
105 |
+
type: Classification
|
106 |
+
dataset:
|
107 |
+
type: mteb/amazon_reviews_multi
|
108 |
+
name: MTEB AmazonReviewsClassification (en)
|
109 |
+
config: en
|
110 |
+
split: test
|
111 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
112 |
+
metrics:
|
113 |
+
- type: accuracy
|
114 |
+
value: 33.134
|
115 |
+
- type: f1
|
116 |
+
value: 32.7905397597083
|
117 |
+
- task:
|
118 |
+
type: Classification
|
119 |
+
dataset:
|
120 |
+
type: mteb/amazon_reviews_multi
|
121 |
+
name: MTEB AmazonReviewsClassification (de)
|
122 |
+
config: de
|
123 |
+
split: test
|
124 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
125 |
+
metrics:
|
126 |
+
- type: accuracy
|
127 |
+
value: 33.388
|
128 |
+
- type: f1
|
129 |
+
value: 33.190561196873084
|
130 |
+
- task:
|
131 |
+
type: Classification
|
132 |
+
dataset:
|
133 |
+
type: mteb/amazon_reviews_multi
|
134 |
+
name: MTEB AmazonReviewsClassification (es)
|
135 |
+
config: es
|
136 |
+
split: test
|
137 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
138 |
+
metrics:
|
139 |
+
- type: accuracy
|
140 |
+
value: 34.824
|
141 |
+
- type: f1
|
142 |
+
value: 34.297290157740726
|
143 |
+
- task:
|
144 |
+
type: Classification
|
145 |
+
dataset:
|
146 |
+
type: mteb/amazon_reviews_multi
|
147 |
+
name: MTEB AmazonReviewsClassification (fr)
|
148 |
+
config: fr
|
149 |
+
split: test
|
150 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
151 |
+
metrics:
|
152 |
+
- type: accuracy
|
153 |
+
value: 33.449999999999996
|
154 |
+
- type: f1
|
155 |
+
value: 33.08017234412433
|
156 |
+
- task:
|
157 |
+
type: Classification
|
158 |
+
dataset:
|
159 |
+
type: mteb/amazon_reviews_multi
|
160 |
+
name: MTEB AmazonReviewsClassification (ja)
|
161 |
+
config: ja
|
162 |
+
split: test
|
163 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
164 |
+
metrics:
|
165 |
+
- type: accuracy
|
166 |
+
value: 30.046
|
167 |
+
- type: f1
|
168 |
+
value: 29.857141661482228
|
169 |
+
- task:
|
170 |
+
type: Classification
|
171 |
+
dataset:
|
172 |
+
type: mteb/amazon_reviews_multi
|
173 |
+
name: MTEB AmazonReviewsClassification (zh)
|
174 |
+
config: zh
|
175 |
+
split: test
|
176 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
177 |
+
metrics:
|
178 |
+
- type: accuracy
|
179 |
+
value: 32.522
|
180 |
+
- type: f1
|
181 |
+
value: 31.854699911472174
|
182 |
+
- task:
|
183 |
+
type: Clustering
|
184 |
+
dataset:
|
185 |
+
type: mteb/arxiv-clustering-p2p
|
186 |
+
name: MTEB ArxivClusteringP2P
|
187 |
+
config: default
|
188 |
+
split: test
|
189 |
+
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
|
190 |
+
metrics:
|
191 |
+
- type: v_measure
|
192 |
+
value: 32.31918856561886
|
193 |
+
- task:
|
194 |
+
type: Clustering
|
195 |
+
dataset:
|
196 |
+
type: mteb/arxiv-clustering-s2s
|
197 |
+
name: MTEB ArxivClusteringS2S
|
198 |
+
config: default
|
199 |
+
split: test
|
200 |
+
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
|
201 |
+
metrics:
|
202 |
+
- type: v_measure
|
203 |
+
value: 25.503481615956137
|
204 |
+
- task:
|
205 |
+
type: Reranking
|
206 |
+
dataset:
|
207 |
+
type: mteb/askubuntudupquestions-reranking
|
208 |
+
name: MTEB AskUbuntuDupQuestions
|
209 |
+
config: default
|
210 |
+
split: test
|
211 |
+
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
|
212 |
+
metrics:
|
213 |
+
- type: map
|
214 |
+
value: 57.91471462820568
|
215 |
+
- type: mrr
|
216 |
+
value: 71.82990370663501
|
217 |
+
- task:
|
218 |
+
type: STS
|
219 |
+
dataset:
|
220 |
+
type: mteb/biosses-sts
|
221 |
+
name: MTEB BIOSSES
|
222 |
+
config: default
|
223 |
+
split: test
|
224 |
+
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
|
225 |
+
metrics:
|
226 |
+
- type: cos_sim_pearson
|
227 |
+
value: 68.83853315193127
|
228 |
+
- type: cos_sim_spearman
|
229 |
+
value: 66.16174850417771
|
230 |
+
- type: euclidean_pearson
|
231 |
+
value: 56.65313897263153
|
232 |
+
- type: euclidean_spearman
|
233 |
+
value: 52.69156205876939
|
234 |
+
- type: manhattan_pearson
|
235 |
+
value: 56.97282154658304
|
236 |
+
- type: manhattan_spearman
|
237 |
+
value: 53.167476517261015
|
238 |
+
- task:
|
239 |
+
type: Classification
|
240 |
+
dataset:
|
241 |
+
type: mteb/banking77
|
242 |
+
name: MTEB Banking77Classification
|
243 |
+
config: default
|
244 |
+
split: test
|
245 |
+
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
|
246 |
+
metrics:
|
247 |
+
- type: accuracy
|
248 |
+
value: 78.08441558441558
|
249 |
+
- type: f1
|
250 |
+
value: 77.99825264827898
|
251 |
+
- task:
|
252 |
+
type: Clustering
|
253 |
+
dataset:
|
254 |
+
type: mteb/biorxiv-clustering-p2p
|
255 |
+
name: MTEB BiorxivClusteringP2P
|
256 |
+
config: default
|
257 |
+
split: test
|
258 |
+
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
|
259 |
+
metrics:
|
260 |
+
- type: v_measure
|
261 |
+
value: 28.98583420521256
|
262 |
+
- task:
|
263 |
+
type: Clustering
|
264 |
+
dataset:
|
265 |
+
type: mteb/biorxiv-clustering-s2s
|
266 |
+
name: MTEB BiorxivClusteringS2S
|
267 |
+
config: default
|
268 |
+
split: test
|
269 |
+
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
|
270 |
+
metrics:
|
271 |
+
- type: v_measure
|
272 |
+
value: 23.195091778460892
|
273 |
+
- task:
|
274 |
+
type: Classification
|
275 |
+
dataset:
|
276 |
+
type: mteb/emotion
|
277 |
+
name: MTEB EmotionClassification
|
278 |
+
config: default
|
279 |
+
split: test
|
280 |
+
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
|
281 |
+
metrics:
|
282 |
+
- type: accuracy
|
283 |
+
value: 43.35
|
284 |
+
- type: f1
|
285 |
+
value: 38.80269436557695
|
286 |
+
- task:
|
287 |
+
type: Classification
|
288 |
+
dataset:
|
289 |
+
type: mteb/imdb
|
290 |
+
name: MTEB ImdbClassification
|
291 |
+
config: default
|
292 |
+
split: test
|
293 |
+
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
|
294 |
+
metrics:
|
295 |
+
- type: accuracy
|
296 |
+
value: 59.348
|
297 |
+
- type: ap
|
298 |
+
value: 55.75065220262251
|
299 |
+
- type: f1
|
300 |
+
value: 58.72117519082607
|
301 |
+
- task:
|
302 |
+
type: Classification
|
303 |
+
dataset:
|
304 |
+
type: mteb/mtop_domain
|
305 |
+
name: MTEB MTOPDomainClassification (en)
|
306 |
+
config: en
|
307 |
+
split: test
|
308 |
+
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
|
309 |
+
metrics:
|
310 |
+
- type: accuracy
|
311 |
+
value: 81.04879160966712
|
312 |
+
- type: f1
|
313 |
+
value: 80.86889779192701
|
314 |
+
- task:
|
315 |
+
type: Classification
|
316 |
+
dataset:
|
317 |
+
type: mteb/mtop_domain
|
318 |
+
name: MTEB MTOPDomainClassification (de)
|
319 |
+
config: de
|
320 |
+
split: test
|
321 |
+
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
|
322 |
+
metrics:
|
323 |
+
- type: accuracy
|
324 |
+
value: 78.59397013243168
|
325 |
+
- type: f1
|
326 |
+
value: 77.09902761555972
|
327 |
+
- task:
|
328 |
+
type: Classification
|
329 |
+
dataset:
|
330 |
+
type: mteb/mtop_domain
|
331 |
+
name: MTEB MTOPDomainClassification (es)
|
332 |
+
config: es
|
333 |
+
split: test
|
334 |
+
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
|
335 |
+
metrics:
|
336 |
+
- type: accuracy
|
337 |
+
value: 79.24282855236824
|
338 |
+
- type: f1
|
339 |
+
value: 78.75883867079015
|
340 |
+
- task:
|
341 |
+
type: Classification
|
342 |
+
dataset:
|
343 |
+
type: mteb/mtop_domain
|
344 |
+
name: MTEB MTOPDomainClassification (fr)
|
345 |
+
config: fr
|
346 |
+
split: test
|
347 |
+
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
|
348 |
+
metrics:
|
349 |
+
- type: accuracy
|
350 |
+
value: 76.16661446915127
|
351 |
+
- type: f1
|
352 |
+
value: 76.30204722831901
|
353 |
+
- task:
|
354 |
+
type: Classification
|
355 |
+
dataset:
|
356 |
+
type: mteb/mtop_domain
|
357 |
+
name: MTEB MTOPDomainClassification (hi)
|
358 |
+
config: hi
|
359 |
+
split: test
|
360 |
+
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
|
361 |
+
metrics:
|
362 |
+
- type: accuracy
|
363 |
+
value: 78.74506991753317
|
364 |
+
- type: f1
|
365 |
+
value: 77.50560442779701
|
366 |
+
- task:
|
367 |
+
type: Classification
|
368 |
+
dataset:
|
369 |
+
type: mteb/mtop_domain
|
370 |
+
name: MTEB MTOPDomainClassification (th)
|
371 |
+
config: th
|
372 |
+
split: test
|
373 |
+
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
|
374 |
+
metrics:
|
375 |
+
- type: accuracy
|
376 |
+
value: 77.67088607594937
|
377 |
+
- type: f1
|
378 |
+
value: 77.21442956887493
|
379 |
+
- task:
|
380 |
+
type: Classification
|
381 |
+
dataset:
|
382 |
+
type: mteb/mtop_intent
|
383 |
+
name: MTEB MTOPIntentClassification (en)
|
384 |
+
config: en
|
385 |
+
split: test
|
386 |
+
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
|
387 |
+
metrics:
|
388 |
+
- type: accuracy
|
389 |
+
value: 62.786137710898316
|
390 |
+
- type: f1
|
391 |
+
value: 46.23474201126368
|
392 |
+
- task:
|
393 |
+
type: Classification
|
394 |
+
dataset:
|
395 |
+
type: mteb/mtop_intent
|
396 |
+
name: MTEB MTOPIntentClassification (de)
|
397 |
+
config: de
|
398 |
+
split: test
|
399 |
+
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
|
400 |
+
metrics:
|
401 |
+
- type: accuracy
|
402 |
+
value: 55.285996055226825
|
403 |
+
- type: f1
|
404 |
+
value: 37.98039513682919
|
405 |
+
- task:
|
406 |
+
type: Classification
|
407 |
+
dataset:
|
408 |
+
type: mteb/mtop_intent
|
409 |
+
name: MTEB MTOPIntentClassification (es)
|
410 |
+
config: es
|
411 |
+
split: test
|
412 |
+
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
|
413 |
+
metrics:
|
414 |
+
- type: accuracy
|
415 |
+
value: 58.67911941294196
|
416 |
+
- type: f1
|
417 |
+
value: 40.541410807124954
|
418 |
+
- task:
|
419 |
+
type: Classification
|
420 |
+
dataset:
|
421 |
+
type: mteb/mtop_intent
|
422 |
+
name: MTEB MTOPIntentClassification (fr)
|
423 |
+
config: fr
|
424 |
+
split: test
|
425 |
+
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
|
426 |
+
metrics:
|
427 |
+
- type: accuracy
|
428 |
+
value: 53.257124960851854
|
429 |
+
- type: f1
|
430 |
+
value: 38.42982319259366
|
431 |
+
- task:
|
432 |
+
type: Classification
|
433 |
+
dataset:
|
434 |
+
type: mteb/mtop_intent
|
435 |
+
name: MTEB MTOPIntentClassification (hi)
|
436 |
+
config: hi
|
437 |
+
split: test
|
438 |
+
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
|
439 |
+
metrics:
|
440 |
+
- type: accuracy
|
441 |
+
value: 59.62352097525995
|
442 |
+
- type: f1
|
443 |
+
value: 41.28886486568534
|
444 |
+
- task:
|
445 |
+
type: Classification
|
446 |
+
dataset:
|
447 |
+
type: mteb/mtop_intent
|
448 |
+
name: MTEB MTOPIntentClassification (th)
|
449 |
+
config: th
|
450 |
+
split: test
|
451 |
+
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
|
452 |
+
metrics:
|
453 |
+
- type: accuracy
|
454 |
+
value: 58.799276672694404
|
455 |
+
- type: f1
|
456 |
+
value: 43.68379466247341
|
457 |
+
- task:
|
458 |
+
type: Classification
|
459 |
+
dataset:
|
460 |
+
type: mteb/amazon_massive_intent
|
461 |
+
name: MTEB MassiveIntentClassification (af)
|
462 |
+
config: af
|
463 |
+
split: test
|
464 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
465 |
+
metrics:
|
466 |
+
- type: accuracy
|
467 |
+
value: 45.42030934767989
|
468 |
+
- type: f1
|
469 |
+
value: 44.12201543566376
|
470 |
+
- task:
|
471 |
+
type: Classification
|
472 |
+
dataset:
|
473 |
+
type: mteb/amazon_massive_intent
|
474 |
+
name: MTEB MassiveIntentClassification (am)
|
475 |
+
config: am
|
476 |
+
split: test
|
477 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
478 |
+
metrics:
|
479 |
+
- type: accuracy
|
480 |
+
value: 37.67652992602556
|
481 |
+
- type: f1
|
482 |
+
value: 35.422091900843164
|
483 |
+
- task:
|
484 |
+
type: Classification
|
485 |
+
dataset:
|
486 |
+
type: mteb/amazon_massive_intent
|
487 |
+
name: MTEB MassiveIntentClassification (ar)
|
488 |
+
config: ar
|
489 |
+
split: test
|
490 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
491 |
+
metrics:
|
492 |
+
- type: accuracy
|
493 |
+
value: 45.02353732347007
|
494 |
+
- type: f1
|
495 |
+
value: 41.852484084738194
|
496 |
+
- task:
|
497 |
+
type: Classification
|
498 |
+
dataset:
|
499 |
+
type: mteb/amazon_massive_intent
|
500 |
+
name: MTEB MassiveIntentClassification (az)
|
501 |
+
config: az
|
502 |
+
split: test
|
503 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
504 |
+
metrics:
|
505 |
+
- type: accuracy
|
506 |
+
value: 48.70880968392737
|
507 |
+
- type: f1
|
508 |
+
value: 46.904360615435046
|
509 |
+
- task:
|
510 |
+
type: Classification
|
511 |
+
dataset:
|
512 |
+
type: mteb/amazon_massive_intent
|
513 |
+
name: MTEB MassiveIntentClassification (bn)
|
514 |
+
config: bn
|
515 |
+
split: test
|
516 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
517 |
+
metrics:
|
518 |
+
- type: accuracy
|
519 |
+
value: 43.78950907868191
|
520 |
+
- type: f1
|
521 |
+
value: 41.58872353920405
|
522 |
+
- task:
|
523 |
+
type: Classification
|
524 |
+
dataset:
|
525 |
+
type: mteb/amazon_massive_intent
|
526 |
+
name: MTEB MassiveIntentClassification (cy)
|
527 |
+
config: cy
|
528 |
+
split: test
|
529 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
530 |
+
metrics:
|
531 |
+
- type: accuracy
|
532 |
+
value: 28.759246805648957
|
533 |
+
- type: f1
|
534 |
+
value: 27.41182001374226
|
535 |
+
- task:
|
536 |
+
type: Classification
|
537 |
+
dataset:
|
538 |
+
type: mteb/amazon_massive_intent
|
539 |
+
name: MTEB MassiveIntentClassification (da)
|
540 |
+
config: da
|
541 |
+
split: test
|
542 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
543 |
+
metrics:
|
544 |
+
- type: accuracy
|
545 |
+
value: 56.74176193678547
|
546 |
+
- type: f1
|
547 |
+
value: 53.82727354182497
|
548 |
+
- task:
|
549 |
+
type: Classification
|
550 |
+
dataset:
|
551 |
+
type: mteb/amazon_massive_intent
|
552 |
+
name: MTEB MassiveIntentClassification (de)
|
553 |
+
config: de
|
554 |
+
split: test
|
555 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
556 |
+
metrics:
|
557 |
+
- type: accuracy
|
558 |
+
value: 51.55682582380632
|
559 |
+
- type: f1
|
560 |
+
value: 49.41963627941866
|
561 |
+
- task:
|
562 |
+
type: Classification
|
563 |
+
dataset:
|
564 |
+
type: mteb/amazon_massive_intent
|
565 |
+
name: MTEB MassiveIntentClassification (el)
|
566 |
+
config: el
|
567 |
+
split: test
|
568 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
569 |
+
metrics:
|
570 |
+
- type: accuracy
|
571 |
+
value: 56.46940147948891
|
572 |
+
- type: f1
|
573 |
+
value: 55.28178711367465
|
574 |
+
- task:
|
575 |
+
type: Classification
|
576 |
+
dataset:
|
577 |
+
type: mteb/amazon_massive_intent
|
578 |
+
name: MTEB MassiveIntentClassification (en)
|
579 |
+
config: en
|
580 |
+
split: test
|
581 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
582 |
+
metrics:
|
583 |
+
- type: accuracy
|
584 |
+
value: 63.83322125084063
|
585 |
+
- type: f1
|
586 |
+
value: 61.836172900845554
|
587 |
+
- task:
|
588 |
+
type: Classification
|
589 |
+
dataset:
|
590 |
+
type: mteb/amazon_massive_intent
|
591 |
+
name: MTEB MassiveIntentClassification (es)
|
592 |
+
config: es
|
593 |
+
split: test
|
594 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
595 |
+
metrics:
|
596 |
+
- type: accuracy
|
597 |
+
value: 58.27505043712172
|
598 |
+
- type: f1
|
599 |
+
value: 57.642436374361154
|
600 |
+
- task:
|
601 |
+
type: Classification
|
602 |
+
dataset:
|
603 |
+
type: mteb/amazon_massive_intent
|
604 |
+
name: MTEB MassiveIntentClassification (fa)
|
605 |
+
config: fa
|
606 |
+
split: test
|
607 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
608 |
+
metrics:
|
609 |
+
- type: accuracy
|
610 |
+
value: 59.05178211163417
|
611 |
+
- type: f1
|
612 |
+
value: 56.858998820504056
|
613 |
+
- task:
|
614 |
+
type: Classification
|
615 |
+
dataset:
|
616 |
+
type: mteb/amazon_massive_intent
|
617 |
+
name: MTEB MassiveIntentClassification (fi)
|
618 |
+
config: fi
|
619 |
+
split: test
|
620 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
621 |
+
metrics:
|
622 |
+
- type: accuracy
|
623 |
+
value: 57.357094821788834
|
624 |
+
- type: f1
|
625 |
+
value: 54.79711189260453
|
626 |
+
- task:
|
627 |
+
type: Classification
|
628 |
+
dataset:
|
629 |
+
type: mteb/amazon_massive_intent
|
630 |
+
name: MTEB MassiveIntentClassification (fr)
|
631 |
+
config: fr
|
632 |
+
split: test
|
633 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
634 |
+
metrics:
|
635 |
+
- type: accuracy
|
636 |
+
value: 58.79959650302623
|
637 |
+
- type: f1
|
638 |
+
value: 57.59158671719513
|
639 |
+
- task:
|
640 |
+
type: Classification
|
641 |
+
dataset:
|
642 |
+
type: mteb/amazon_massive_intent
|
643 |
+
name: MTEB MassiveIntentClassification (he)
|
644 |
+
config: he
|
645 |
+
split: test
|
646 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
647 |
+
metrics:
|
648 |
+
- type: accuracy
|
649 |
+
value: 51.1768661735037
|
650 |
+
- type: f1
|
651 |
+
value: 48.886397276270515
|
652 |
+
- task:
|
653 |
+
type: Classification
|
654 |
+
dataset:
|
655 |
+
type: mteb/amazon_massive_intent
|
656 |
+
name: MTEB MassiveIntentClassification (hi)
|
657 |
+
config: hi
|
658 |
+
split: test
|
659 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
660 |
+
metrics:
|
661 |
+
- type: accuracy
|
662 |
+
value: 57.06455951580362
|
663 |
+
- type: f1
|
664 |
+
value: 55.01530952684585
|
665 |
+
- task:
|
666 |
+
type: Classification
|
667 |
+
dataset:
|
668 |
+
type: mteb/amazon_massive_intent
|
669 |
+
name: MTEB MassiveIntentClassification (hu)
|
670 |
+
config: hu
|
671 |
+
split: test
|
672 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
673 |
+
metrics:
|
674 |
+
- type: accuracy
|
675 |
+
value: 58.3591123066577
|
676 |
+
- type: f1
|
677 |
+
value: 55.9277783370191
|
678 |
+
- task:
|
679 |
+
type: Classification
|
680 |
+
dataset:
|
681 |
+
type: mteb/amazon_massive_intent
|
682 |
+
name: MTEB MassiveIntentClassification (hy)
|
683 |
+
config: hy
|
684 |
+
split: test
|
685 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
686 |
+
metrics:
|
687 |
+
- type: accuracy
|
688 |
+
value: 52.108271687962336
|
689 |
+
- type: f1
|
690 |
+
value: 51.195023400664596
|
691 |
+
- task:
|
692 |
+
type: Classification
|
693 |
+
dataset:
|
694 |
+
type: mteb/amazon_massive_intent
|
695 |
+
name: MTEB MassiveIntentClassification (id)
|
696 |
+
config: id
|
697 |
+
split: test
|
698 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
699 |
+
metrics:
|
700 |
+
- type: accuracy
|
701 |
+
value: 58.26832548755883
|
702 |
+
- type: f1
|
703 |
+
value: 56.60774065423401
|
704 |
+
- task:
|
705 |
+
type: Classification
|
706 |
+
dataset:
|
707 |
+
type: mteb/amazon_massive_intent
|
708 |
+
name: MTEB MassiveIntentClassification (is)
|
709 |
+
config: is
|
710 |
+
split: test
|
711 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
712 |
+
metrics:
|
713 |
+
- type: accuracy
|
714 |
+
value: 35.806993947545394
|
715 |
+
- type: f1
|
716 |
+
value: 34.290418953173294
|
717 |
+
- task:
|
718 |
+
type: Classification
|
719 |
+
dataset:
|
720 |
+
type: mteb/amazon_massive_intent
|
721 |
+
name: MTEB MassiveIntentClassification (it)
|
722 |
+
config: it
|
723 |
+
split: test
|
724 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
725 |
+
metrics:
|
726 |
+
- type: accuracy
|
727 |
+
value: 58.27841291190315
|
728 |
+
- type: f1
|
729 |
+
value: 56.9438998642419
|
730 |
+
- task:
|
731 |
+
type: Classification
|
732 |
+
dataset:
|
733 |
+
type: mteb/amazon_massive_intent
|
734 |
+
name: MTEB MassiveIntentClassification (ja)
|
735 |
+
config: ja
|
736 |
+
split: test
|
737 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
738 |
+
metrics:
|
739 |
+
- type: accuracy
|
740 |
+
value: 60.78009414929389
|
741 |
+
- type: f1
|
742 |
+
value: 59.15780842483667
|
743 |
+
- task:
|
744 |
+
type: Classification
|
745 |
+
dataset:
|
746 |
+
type: mteb/amazon_massive_intent
|
747 |
+
name: MTEB MassiveIntentClassification (jv)
|
748 |
+
config: jv
|
749 |
+
split: test
|
750 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
751 |
+
metrics:
|
752 |
+
- type: accuracy
|
753 |
+
value: 31.153328850033624
|
754 |
+
- type: f1
|
755 |
+
value: 30.11004596099605
|
756 |
+
- task:
|
757 |
+
type: Classification
|
758 |
+
dataset:
|
759 |
+
type: mteb/amazon_massive_intent
|
760 |
+
name: MTEB MassiveIntentClassification (ka)
|
761 |
+
config: ka
|
762 |
+
split: test
|
763 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
764 |
+
metrics:
|
765 |
+
- type: accuracy
|
766 |
+
value: 44.50235373234701
|
767 |
+
- type: f1
|
768 |
+
value: 44.040585262624745
|
769 |
+
- task:
|
770 |
+
type: Classification
|
771 |
+
dataset:
|
772 |
+
type: mteb/amazon_massive_intent
|
773 |
+
name: MTEB MassiveIntentClassification (km)
|
774 |
+
config: km
|
775 |
+
split: test
|
776 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
777 |
+
metrics:
|
778 |
+
- type: accuracy
|
779 |
+
value: 40.99193006052455
|
780 |
+
- type: f1
|
781 |
+
value: 39.505480119272484
|
782 |
+
- task:
|
783 |
+
type: Classification
|
784 |
+
dataset:
|
785 |
+
type: mteb/amazon_massive_intent
|
786 |
+
name: MTEB MassiveIntentClassification (kn)
|
787 |
+
config: kn
|
788 |
+
split: test
|
789 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
790 |
+
metrics:
|
791 |
+
- type: accuracy
|
792 |
+
value: 46.95696032279758
|
793 |
+
- type: f1
|
794 |
+
value: 43.093638940785326
|
795 |
+
- task:
|
796 |
+
type: Classification
|
797 |
+
dataset:
|
798 |
+
type: mteb/amazon_massive_intent
|
799 |
+
name: MTEB MassiveIntentClassification (ko)
|
800 |
+
config: ko
|
801 |
+
split: test
|
802 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
803 |
+
metrics:
|
804 |
+
- type: accuracy
|
805 |
+
value: 54.73100201748486
|
806 |
+
- type: f1
|
807 |
+
value: 52.79750744404114
|
808 |
+
- task:
|
809 |
+
type: Classification
|
810 |
+
dataset:
|
811 |
+
type: mteb/amazon_massive_intent
|
812 |
+
name: MTEB MassiveIntentClassification (lv)
|
813 |
+
config: lv
|
814 |
+
split: test
|
815 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
816 |
+
metrics:
|
817 |
+
- type: accuracy
|
818 |
+
value: 54.865501008742434
|
819 |
+
- type: f1
|
820 |
+
value: 53.64798408964839
|
821 |
+
- task:
|
822 |
+
type: Classification
|
823 |
+
dataset:
|
824 |
+
type: mteb/amazon_massive_intent
|
825 |
+
name: MTEB MassiveIntentClassification (ml)
|
826 |
+
config: ml
|
827 |
+
split: test
|
828 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
829 |
+
metrics:
|
830 |
+
- type: accuracy
|
831 |
+
value: 47.891728312037664
|
832 |
+
- type: f1
|
833 |
+
value: 45.261229414636055
|
834 |
+
- task:
|
835 |
+
type: Classification
|
836 |
+
dataset:
|
837 |
+
type: mteb/amazon_massive_intent
|
838 |
+
name: MTEB MassiveIntentClassification (mn)
|
839 |
+
config: mn
|
840 |
+
split: test
|
841 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
842 |
+
metrics:
|
843 |
+
- type: accuracy
|
844 |
+
value: 52.2259583053127
|
845 |
+
- type: f1
|
846 |
+
value: 50.5903419246987
|
847 |
+
- task:
|
848 |
+
type: Classification
|
849 |
+
dataset:
|
850 |
+
type: mteb/amazon_massive_intent
|
851 |
+
name: MTEB MassiveIntentClassification (ms)
|
852 |
+
config: ms
|
853 |
+
split: test
|
854 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
855 |
+
metrics:
|
856 |
+
- type: accuracy
|
857 |
+
value: 54.277067921990586
|
858 |
+
- type: f1
|
859 |
+
value: 52.472042479965886
|
860 |
+
- task:
|
861 |
+
type: Classification
|
862 |
+
dataset:
|
863 |
+
type: mteb/amazon_massive_intent
|
864 |
+
name: MTEB MassiveIntentClassification (my)
|
865 |
+
config: my
|
866 |
+
split: test
|
867 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
868 |
+
metrics:
|
869 |
+
- type: accuracy
|
870 |
+
value: 51.95696032279757
|
871 |
+
- type: f1
|
872 |
+
value: 49.79330411854258
|
873 |
+
- task:
|
874 |
+
type: Classification
|
875 |
+
dataset:
|
876 |
+
type: mteb/amazon_massive_intent
|
877 |
+
name: MTEB MassiveIntentClassification (nb)
|
878 |
+
config: nb
|
879 |
+
split: test
|
880 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
881 |
+
metrics:
|
882 |
+
- type: accuracy
|
883 |
+
value: 54.63685272360457
|
884 |
+
- type: f1
|
885 |
+
value: 52.81267480650003
|
886 |
+
- task:
|
887 |
+
type: Classification
|
888 |
+
dataset:
|
889 |
+
type: mteb/amazon_massive_intent
|
890 |
+
name: MTEB MassiveIntentClassification (nl)
|
891 |
+
config: nl
|
892 |
+
split: test
|
893 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
894 |
+
metrics:
|
895 |
+
- type: accuracy
|
896 |
+
value: 59.451916610625425
|
897 |
+
- type: f1
|
898 |
+
value: 57.34790386645091
|
899 |
+
- task:
|
900 |
+
type: Classification
|
901 |
+
dataset:
|
902 |
+
type: mteb/amazon_massive_intent
|
903 |
+
name: MTEB MassiveIntentClassification (pl)
|
904 |
+
config: pl
|
905 |
+
split: test
|
906 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
907 |
+
metrics:
|
908 |
+
- type: accuracy
|
909 |
+
value: 58.91055817081372
|
910 |
+
- type: f1
|
911 |
+
value: 56.39195048528157
|
912 |
+
- task:
|
913 |
+
type: Classification
|
914 |
+
dataset:
|
915 |
+
type: mteb/amazon_massive_intent
|
916 |
+
name: MTEB MassiveIntentClassification (pt)
|
917 |
+
config: pt
|
918 |
+
split: test
|
919 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
920 |
+
metrics:
|
921 |
+
- type: accuracy
|
922 |
+
value: 59.84196368527236
|
923 |
+
- type: f1
|
924 |
+
value: 58.72244763127063
|
925 |
+
- task:
|
926 |
+
type: Classification
|
927 |
+
dataset:
|
928 |
+
type: mteb/amazon_massive_intent
|
929 |
+
name: MTEB MassiveIntentClassification (ro)
|
930 |
+
config: ro
|
931 |
+
split: test
|
932 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
933 |
+
metrics:
|
934 |
+
- type: accuracy
|
935 |
+
value: 57.04102219233354
|
936 |
+
- type: f1
|
937 |
+
value: 55.67040186148946
|
938 |
+
- task:
|
939 |
+
type: Classification
|
940 |
+
dataset:
|
941 |
+
type: mteb/amazon_massive_intent
|
942 |
+
name: MTEB MassiveIntentClassification (ru)
|
943 |
+
config: ru
|
944 |
+
split: test
|
945 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
946 |
+
metrics:
|
947 |
+
- type: accuracy
|
948 |
+
value: 58.01613987895091
|
949 |
+
- type: f1
|
950 |
+
value: 57.203949825484855
|
951 |
+
- task:
|
952 |
+
type: Classification
|
953 |
+
dataset:
|
954 |
+
type: mteb/amazon_massive_intent
|
955 |
+
name: MTEB MassiveIntentClassification (sl)
|
956 |
+
config: sl
|
957 |
+
split: test
|
958 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
959 |
+
metrics:
|
960 |
+
- type: accuracy
|
961 |
+
value: 56.35843981170141
|
962 |
+
- type: f1
|
963 |
+
value: 54.18656338999773
|
964 |
+
- task:
|
965 |
+
type: Classification
|
966 |
+
dataset:
|
967 |
+
type: mteb/amazon_massive_intent
|
968 |
+
name: MTEB MassiveIntentClassification (sq)
|
969 |
+
config: sq
|
970 |
+
split: test
|
971 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
972 |
+
metrics:
|
973 |
+
- type: accuracy
|
974 |
+
value: 56.47948890383322
|
975 |
+
- type: f1
|
976 |
+
value: 54.772224557130954
|
977 |
+
- task:
|
978 |
+
type: Classification
|
979 |
+
dataset:
|
980 |
+
type: mteb/amazon_massive_intent
|
981 |
+
name: MTEB MassiveIntentClassification (sv)
|
982 |
+
config: sv
|
983 |
+
split: test
|
984 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
985 |
+
metrics:
|
986 |
+
- type: accuracy
|
987 |
+
value: 58.43981170141224
|
988 |
+
- type: f1
|
989 |
+
value: 56.09260971364242
|
990 |
+
- task:
|
991 |
+
type: Classification
|
992 |
+
dataset:
|
993 |
+
type: mteb/amazon_massive_intent
|
994 |
+
name: MTEB MassiveIntentClassification (sw)
|
995 |
+
config: sw
|
996 |
+
split: test
|
997 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
998 |
+
metrics:
|
999 |
+
- type: accuracy
|
1000 |
+
value: 33.9609952925353
|
1001 |
+
- type: f1
|
1002 |
+
value: 33.18853392353405
|
1003 |
+
- task:
|
1004 |
+
type: Classification
|
1005 |
+
dataset:
|
1006 |
+
type: mteb/amazon_massive_intent
|
1007 |
+
name: MTEB MassiveIntentClassification (ta)
|
1008 |
+
config: ta
|
1009 |
+
split: test
|
1010 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
1011 |
+
metrics:
|
1012 |
+
- type: accuracy
|
1013 |
+
value: 44.29388029589778
|
1014 |
+
- type: f1
|
1015 |
+
value: 41.51986533284474
|
1016 |
+
- task:
|
1017 |
+
type: Classification
|
1018 |
+
dataset:
|
1019 |
+
type: mteb/amazon_massive_intent
|
1020 |
+
name: MTEB MassiveIntentClassification (te)
|
1021 |
+
config: te
|
1022 |
+
split: test
|
1023 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
1024 |
+
metrics:
|
1025 |
+
- type: accuracy
|
1026 |
+
value: 47.13517148621385
|
1027 |
+
- type: f1
|
1028 |
+
value: 43.94784138379624
|
1029 |
+
- task:
|
1030 |
+
type: Classification
|
1031 |
+
dataset:
|
1032 |
+
type: mteb/amazon_massive_intent
|
1033 |
+
name: MTEB MassiveIntentClassification (th)
|
1034 |
+
config: th
|
1035 |
+
split: test
|
1036 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
1037 |
+
metrics:
|
1038 |
+
- type: accuracy
|
1039 |
+
value: 56.856086079354405
|
1040 |
+
- type: f1
|
1041 |
+
value: 56.618177384748456
|
1042 |
+
- task:
|
1043 |
+
type: Classification
|
1044 |
+
dataset:
|
1045 |
+
type: mteb/amazon_massive_intent
|
1046 |
+
name: MTEB MassiveIntentClassification (tl)
|
1047 |
+
config: tl
|
1048 |
+
split: test
|
1049 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
1050 |
+
metrics:
|
1051 |
+
- type: accuracy
|
1052 |
+
value: 35.35978480161398
|
1053 |
+
- type: f1
|
1054 |
+
value: 34.060680080365046
|
1055 |
+
- task:
|
1056 |
+
type: Classification
|
1057 |
+
dataset:
|
1058 |
+
type: mteb/amazon_massive_intent
|
1059 |
+
name: MTEB MassiveIntentClassification (tr)
|
1060 |
+
config: tr
|
1061 |
+
split: test
|
1062 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
1063 |
+
metrics:
|
1064 |
+
- type: accuracy
|
1065 |
+
value: 59.630127774041696
|
1066 |
+
- type: f1
|
1067 |
+
value: 57.46288652988266
|
1068 |
+
- task:
|
1069 |
+
type: Classification
|
1070 |
+
dataset:
|
1071 |
+
type: mteb/amazon_massive_intent
|
1072 |
+
name: MTEB MassiveIntentClassification (ur)
|
1073 |
+
config: ur
|
1074 |
+
split: test
|
1075 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
1076 |
+
metrics:
|
1077 |
+
- type: accuracy
|
1078 |
+
value: 52.7908540685945
|
1079 |
+
- type: f1
|
1080 |
+
value: 51.46934239116157
|
1081 |
+
- task:
|
1082 |
+
type: Classification
|
1083 |
+
dataset:
|
1084 |
+
type: mteb/amazon_massive_intent
|
1085 |
+
name: MTEB MassiveIntentClassification (vi)
|
1086 |
+
config: vi
|
1087 |
+
split: test
|
1088 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
1089 |
+
metrics:
|
1090 |
+
- type: accuracy
|
1091 |
+
value: 54.6469401479489
|
1092 |
+
- type: f1
|
1093 |
+
value: 53.9903066185816
|
1094 |
+
- task:
|
1095 |
+
type: Classification
|
1096 |
+
dataset:
|
1097 |
+
type: mteb/amazon_massive_intent
|
1098 |
+
name: MTEB MassiveIntentClassification (zh-CN)
|
1099 |
+
config: zh-CN
|
1100 |
+
split: test
|
1101 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
1102 |
+
metrics:
|
1103 |
+
- type: accuracy
|
1104 |
+
value: 60.85743106926698
|
1105 |
+
- type: f1
|
1106 |
+
value: 59.31579548450755
|
1107 |
+
- task:
|
1108 |
+
type: Classification
|
1109 |
+
dataset:
|
1110 |
+
type: mteb/amazon_massive_intent
|
1111 |
+
name: MTEB MassiveIntentClassification (zh-TW)
|
1112 |
+
config: zh-TW
|
1113 |
+
split: test
|
1114 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
1115 |
+
metrics:
|
1116 |
+
- type: accuracy
|
1117 |
+
value: 57.46805648957633
|
1118 |
+
- type: f1
|
1119 |
+
value: 57.48469733657326
|
1120 |
+
- task:
|
1121 |
+
type: Classification
|
1122 |
+
dataset:
|
1123 |
+
type: mteb/amazon_massive_scenario
|
1124 |
+
name: MTEB MassiveScenarioClassification (af)
|
1125 |
+
config: af
|
1126 |
+
split: test
|
1127 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1128 |
+
metrics:
|
1129 |
+
- type: accuracy
|
1130 |
+
value: 50.86415601882985
|
1131 |
+
- type: f1
|
1132 |
+
value: 49.41696672602645
|
1133 |
+
- task:
|
1134 |
+
type: Classification
|
1135 |
+
dataset:
|
1136 |
+
type: mteb/amazon_massive_scenario
|
1137 |
+
name: MTEB MassiveScenarioClassification (am)
|
1138 |
+
config: am
|
1139 |
+
split: test
|
1140 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1141 |
+
metrics:
|
1142 |
+
- type: accuracy
|
1143 |
+
value: 41.183591123066584
|
1144 |
+
- type: f1
|
1145 |
+
value: 40.04563865770774
|
1146 |
+
- task:
|
1147 |
+
type: Classification
|
1148 |
+
dataset:
|
1149 |
+
type: mteb/amazon_massive_scenario
|
1150 |
+
name: MTEB MassiveScenarioClassification (ar)
|
1151 |
+
config: ar
|
1152 |
+
split: test
|
1153 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1154 |
+
metrics:
|
1155 |
+
- type: accuracy
|
1156 |
+
value: 50.08069939475455
|
1157 |
+
- type: f1
|
1158 |
+
value: 50.724800165846126
|
1159 |
+
- task:
|
1160 |
+
type: Classification
|
1161 |
+
dataset:
|
1162 |
+
type: mteb/amazon_massive_scenario
|
1163 |
+
name: MTEB MassiveScenarioClassification (az)
|
1164 |
+
config: az
|
1165 |
+
split: test
|
1166 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1167 |
+
metrics:
|
1168 |
+
- type: accuracy
|
1169 |
+
value: 51.287827841291204
|
1170 |
+
- type: f1
|
1171 |
+
value: 50.72873776739851
|
1172 |
+
- task:
|
1173 |
+
type: Classification
|
1174 |
+
dataset:
|
1175 |
+
type: mteb/amazon_massive_scenario
|
1176 |
+
name: MTEB MassiveScenarioClassification (bn)
|
1177 |
+
config: bn
|
1178 |
+
split: test
|
1179 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1180 |
+
metrics:
|
1181 |
+
- type: accuracy
|
1182 |
+
value: 46.53328850033624
|
1183 |
+
- type: f1
|
1184 |
+
value: 45.93317866639667
|
1185 |
+
- task:
|
1186 |
+
type: Classification
|
1187 |
+
dataset:
|
1188 |
+
type: mteb/amazon_massive_scenario
|
1189 |
+
name: MTEB MassiveScenarioClassification (cy)
|
1190 |
+
config: cy
|
1191 |
+
split: test
|
1192 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1193 |
+
metrics:
|
1194 |
+
- type: accuracy
|
1195 |
+
value: 34.347679892400805
|
1196 |
+
- type: f1
|
1197 |
+
value: 31.941581141280828
|
1198 |
+
- task:
|
1199 |
+
type: Classification
|
1200 |
+
dataset:
|
1201 |
+
type: mteb/amazon_massive_scenario
|
1202 |
+
name: MTEB MassiveScenarioClassification (da)
|
1203 |
+
config: da
|
1204 |
+
split: test
|
1205 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1206 |
+
metrics:
|
1207 |
+
- type: accuracy
|
1208 |
+
value: 63.073301950235376
|
1209 |
+
- type: f1
|
1210 |
+
value: 62.228728940111054
|
1211 |
+
- task:
|
1212 |
+
type: Classification
|
1213 |
+
dataset:
|
1214 |
+
type: mteb/amazon_massive_scenario
|
1215 |
+
name: MTEB MassiveScenarioClassification (de)
|
1216 |
+
config: de
|
1217 |
+
split: test
|
1218 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1219 |
+
metrics:
|
1220 |
+
- type: accuracy
|
1221 |
+
value: 56.398789509078675
|
1222 |
+
- type: f1
|
1223 |
+
value: 54.80778341609032
|
1224 |
+
- task:
|
1225 |
+
type: Classification
|
1226 |
+
dataset:
|
1227 |
+
type: mteb/amazon_massive_scenario
|
1228 |
+
name: MTEB MassiveScenarioClassification (el)
|
1229 |
+
config: el
|
1230 |
+
split: test
|
1231 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1232 |
+
metrics:
|
1233 |
+
- type: accuracy
|
1234 |
+
value: 61.79892400806993
|
1235 |
+
- type: f1
|
1236 |
+
value: 60.69430756982446
|
1237 |
+
- task:
|
1238 |
+
type: Classification
|
1239 |
+
dataset:
|
1240 |
+
type: mteb/amazon_massive_scenario
|
1241 |
+
name: MTEB MassiveScenarioClassification (en)
|
1242 |
+
config: en
|
1243 |
+
split: test
|
1244 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1245 |
+
metrics:
|
1246 |
+
- type: accuracy
|
1247 |
+
value: 66.96368527236046
|
1248 |
+
- type: f1
|
1249 |
+
value: 66.5893927997656
|
1250 |
+
- task:
|
1251 |
+
type: Classification
|
1252 |
+
dataset:
|
1253 |
+
type: mteb/amazon_massive_scenario
|
1254 |
+
name: MTEB MassiveScenarioClassification (es)
|
1255 |
+
config: es
|
1256 |
+
split: test
|
1257 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1258 |
+
metrics:
|
1259 |
+
- type: accuracy
|
1260 |
+
value: 62.21250840618695
|
1261 |
+
- type: f1
|
1262 |
+
value: 62.347177794128925
|
1263 |
+
- task:
|
1264 |
+
type: Classification
|
1265 |
+
dataset:
|
1266 |
+
type: mteb/amazon_massive_scenario
|
1267 |
+
name: MTEB MassiveScenarioClassification (fa)
|
1268 |
+
config: fa
|
1269 |
+
split: test
|
1270 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1271 |
+
metrics:
|
1272 |
+
- type: accuracy
|
1273 |
+
value: 62.43779421654339
|
1274 |
+
- type: f1
|
1275 |
+
value: 61.307701312085605
|
1276 |
+
- task:
|
1277 |
+
type: Classification
|
1278 |
+
dataset:
|
1279 |
+
type: mteb/amazon_massive_scenario
|
1280 |
+
name: MTEB MassiveScenarioClassification (fi)
|
1281 |
+
config: fi
|
1282 |
+
split: test
|
1283 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1284 |
+
metrics:
|
1285 |
+
- type: accuracy
|
1286 |
+
value: 61.09952925353059
|
1287 |
+
- type: f1
|
1288 |
+
value: 60.313907927386914
|
1289 |
+
- task:
|
1290 |
+
type: Classification
|
1291 |
+
dataset:
|
1292 |
+
type: mteb/amazon_massive_scenario
|
1293 |
+
name: MTEB MassiveScenarioClassification (fr)
|
1294 |
+
config: fr
|
1295 |
+
split: test
|
1296 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1297 |
+
metrics:
|
1298 |
+
- type: accuracy
|
1299 |
+
value: 63.38601210490922
|
1300 |
+
- type: f1
|
1301 |
+
value: 63.05968938353488
|
1302 |
+
- task:
|
1303 |
+
type: Classification
|
1304 |
+
dataset:
|
1305 |
+
type: mteb/amazon_massive_scenario
|
1306 |
+
name: MTEB MassiveScenarioClassification (he)
|
1307 |
+
config: he
|
1308 |
+
split: test
|
1309 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1310 |
+
metrics:
|
1311 |
+
- type: accuracy
|
1312 |
+
value: 56.2878278412912
|
1313 |
+
- type: f1
|
1314 |
+
value: 55.92927644838597
|
1315 |
+
- task:
|
1316 |
+
type: Classification
|
1317 |
+
dataset:
|
1318 |
+
type: mteb/amazon_massive_scenario
|
1319 |
+
name: MTEB MassiveScenarioClassification (hi)
|
1320 |
+
config: hi
|
1321 |
+
split: test
|
1322 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1323 |
+
metrics:
|
1324 |
+
- type: accuracy
|
1325 |
+
value: 60.62878278412912
|
1326 |
+
- type: f1
|
1327 |
+
value: 60.25299253652635
|
1328 |
+
- task:
|
1329 |
+
type: Classification
|
1330 |
+
dataset:
|
1331 |
+
type: mteb/amazon_massive_scenario
|
1332 |
+
name: MTEB MassiveScenarioClassification (hu)
|
1333 |
+
config: hu
|
1334 |
+
split: test
|
1335 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1336 |
+
metrics:
|
1337 |
+
- type: accuracy
|
1338 |
+
value: 63.28850033624748
|
1339 |
+
- type: f1
|
1340 |
+
value: 62.77053246337031
|
1341 |
+
- task:
|
1342 |
+
type: Classification
|
1343 |
+
dataset:
|
1344 |
+
type: mteb/amazon_massive_scenario
|
1345 |
+
name: MTEB MassiveScenarioClassification (hy)
|
1346 |
+
config: hy
|
1347 |
+
split: test
|
1348 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1349 |
+
metrics:
|
1350 |
+
- type: accuracy
|
1351 |
+
value: 54.875588433086754
|
1352 |
+
- type: f1
|
1353 |
+
value: 54.30717357279134
|
1354 |
+
- task:
|
1355 |
+
type: Classification
|
1356 |
+
dataset:
|
1357 |
+
type: mteb/amazon_massive_scenario
|
1358 |
+
name: MTEB MassiveScenarioClassification (id)
|
1359 |
+
config: id
|
1360 |
+
split: test
|
1361 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1362 |
+
metrics:
|
1363 |
+
- type: accuracy
|
1364 |
+
value: 61.99394754539341
|
1365 |
+
- type: f1
|
1366 |
+
value: 61.73085530883037
|
1367 |
+
- task:
|
1368 |
+
type: Classification
|
1369 |
+
dataset:
|
1370 |
+
type: mteb/amazon_massive_scenario
|
1371 |
+
name: MTEB MassiveScenarioClassification (is)
|
1372 |
+
config: is
|
1373 |
+
split: test
|
1374 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1375 |
+
metrics:
|
1376 |
+
- type: accuracy
|
1377 |
+
value: 38.581035642232685
|
1378 |
+
- type: f1
|
1379 |
+
value: 36.96287269695893
|
1380 |
+
- task:
|
1381 |
+
type: Classification
|
1382 |
+
dataset:
|
1383 |
+
type: mteb/amazon_massive_scenario
|
1384 |
+
name: MTEB MassiveScenarioClassification (it)
|
1385 |
+
config: it
|
1386 |
+
split: test
|
1387 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1388 |
+
metrics:
|
1389 |
+
- type: accuracy
|
1390 |
+
value: 62.350369872225976
|
1391 |
+
- type: f1
|
1392 |
+
value: 61.807327324823966
|
1393 |
+
- task:
|
1394 |
+
type: Classification
|
1395 |
+
dataset:
|
1396 |
+
type: mteb/amazon_massive_scenario
|
1397 |
+
name: MTEB MassiveScenarioClassification (ja)
|
1398 |
+
config: ja
|
1399 |
+
split: test
|
1400 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1401 |
+
metrics:
|
1402 |
+
- type: accuracy
|
1403 |
+
value: 65.17148621385338
|
1404 |
+
- type: f1
|
1405 |
+
value: 65.29620144656751
|
1406 |
+
- task:
|
1407 |
+
type: Classification
|
1408 |
+
dataset:
|
1409 |
+
type: mteb/amazon_massive_scenario
|
1410 |
+
name: MTEB MassiveScenarioClassification (jv)
|
1411 |
+
config: jv
|
1412 |
+
split: test
|
1413 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1414 |
+
metrics:
|
1415 |
+
- type: accuracy
|
1416 |
+
value: 36.12642905178212
|
1417 |
+
- type: f1
|
1418 |
+
value: 35.334393048479484
|
1419 |
+
- task:
|
1420 |
+
type: Classification
|
1421 |
+
dataset:
|
1422 |
+
type: mteb/amazon_massive_scenario
|
1423 |
+
name: MTEB MassiveScenarioClassification (ka)
|
1424 |
+
config: ka
|
1425 |
+
split: test
|
1426 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1427 |
+
metrics:
|
1428 |
+
- type: accuracy
|
1429 |
+
value: 50.26899798251513
|
1430 |
+
- type: f1
|
1431 |
+
value: 49.041065960139434
|
1432 |
+
- task:
|
1433 |
+
type: Classification
|
1434 |
+
dataset:
|
1435 |
+
type: mteb/amazon_massive_scenario
|
1436 |
+
name: MTEB MassiveScenarioClassification (km)
|
1437 |
+
config: km
|
1438 |
+
split: test
|
1439 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1440 |
+
metrics:
|
1441 |
+
- type: accuracy
|
1442 |
+
value: 44.24344317417619
|
1443 |
+
- type: f1
|
1444 |
+
value: 42.42177854872125
|
1445 |
+
- task:
|
1446 |
+
type: Classification
|
1447 |
+
dataset:
|
1448 |
+
type: mteb/amazon_massive_scenario
|
1449 |
+
name: MTEB MassiveScenarioClassification (kn)
|
1450 |
+
config: kn
|
1451 |
+
split: test
|
1452 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1453 |
+
metrics:
|
1454 |
+
- type: accuracy
|
1455 |
+
value: 47.370544720914594
|
1456 |
+
- type: f1
|
1457 |
+
value: 46.589722581465324
|
1458 |
+
- task:
|
1459 |
+
type: Classification
|
1460 |
+
dataset:
|
1461 |
+
type: mteb/amazon_massive_scenario
|
1462 |
+
name: MTEB MassiveScenarioClassification (ko)
|
1463 |
+
config: ko
|
1464 |
+
split: test
|
1465 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1466 |
+
metrics:
|
1467 |
+
- type: accuracy
|
1468 |
+
value: 58.89038332212508
|
1469 |
+
- type: f1
|
1470 |
+
value: 57.753607921990394
|
1471 |
+
- task:
|
1472 |
+
type: Classification
|
1473 |
+
dataset:
|
1474 |
+
type: mteb/amazon_massive_scenario
|
1475 |
+
name: MTEB MassiveScenarioClassification (lv)
|
1476 |
+
config: lv
|
1477 |
+
split: test
|
1478 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1479 |
+
metrics:
|
1480 |
+
- type: accuracy
|
1481 |
+
value: 56.506388702084756
|
1482 |
+
- type: f1
|
1483 |
+
value: 56.0485860423295
|
1484 |
+
- task:
|
1485 |
+
type: Classification
|
1486 |
+
dataset:
|
1487 |
+
type: mteb/amazon_massive_scenario
|
1488 |
+
name: MTEB MassiveScenarioClassification (ml)
|
1489 |
+
config: ml
|
1490 |
+
split: test
|
1491 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1492 |
+
metrics:
|
1493 |
+
- type: accuracy
|
1494 |
+
value: 50.06388702084734
|
1495 |
+
- type: f1
|
1496 |
+
value: 50.109364641824584
|
1497 |
+
- task:
|
1498 |
+
type: Classification
|
1499 |
+
dataset:
|
1500 |
+
type: mteb/amazon_massive_scenario
|
1501 |
+
name: MTEB MassiveScenarioClassification (mn)
|
1502 |
+
config: mn
|
1503 |
+
split: test
|
1504 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1505 |
+
metrics:
|
1506 |
+
- type: accuracy
|
1507 |
+
value: 55.053799596503026
|
1508 |
+
- type: f1
|
1509 |
+
value: 54.490665705666686
|
1510 |
+
- task:
|
1511 |
+
type: Classification
|
1512 |
+
dataset:
|
1513 |
+
type: mteb/amazon_massive_scenario
|
1514 |
+
name: MTEB MassiveScenarioClassification (ms)
|
1515 |
+
config: ms
|
1516 |
+
split: test
|
1517 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1518 |
+
metrics:
|
1519 |
+
- type: accuracy
|
1520 |
+
value: 59.77135171486213
|
1521 |
+
- type: f1
|
1522 |
+
value: 58.2808650158803
|
1523 |
+
- task:
|
1524 |
+
type: Classification
|
1525 |
+
dataset:
|
1526 |
+
type: mteb/amazon_massive_scenario
|
1527 |
+
name: MTEB MassiveScenarioClassification (my)
|
1528 |
+
config: my
|
1529 |
+
split: test
|
1530 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1531 |
+
metrics:
|
1532 |
+
- type: accuracy
|
1533 |
+
value: 55.71620712844654
|
1534 |
+
- type: f1
|
1535 |
+
value: 53.863034882475304
|
1536 |
+
- task:
|
1537 |
+
type: Classification
|
1538 |
+
dataset:
|
1539 |
+
type: mteb/amazon_massive_scenario
|
1540 |
+
name: MTEB MassiveScenarioClassification (nb)
|
1541 |
+
config: nb
|
1542 |
+
split: test
|
1543 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1544 |
+
metrics:
|
1545 |
+
- type: accuracy
|
1546 |
+
value: 60.26227303295225
|
1547 |
+
- type: f1
|
1548 |
+
value: 59.86604657147016
|
1549 |
+
- task:
|
1550 |
+
type: Classification
|
1551 |
+
dataset:
|
1552 |
+
type: mteb/amazon_massive_scenario
|
1553 |
+
name: MTEB MassiveScenarioClassification (nl)
|
1554 |
+
config: nl
|
1555 |
+
split: test
|
1556 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1557 |
+
metrics:
|
1558 |
+
- type: accuracy
|
1559 |
+
value: 63.3759246805649
|
1560 |
+
- type: f1
|
1561 |
+
value: 62.45257339288533
|
1562 |
+
- task:
|
1563 |
+
type: Classification
|
1564 |
+
dataset:
|
1565 |
+
type: mteb/amazon_massive_scenario
|
1566 |
+
name: MTEB MassiveScenarioClassification (pl)
|
1567 |
+
config: pl
|
1568 |
+
split: test
|
1569 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1570 |
+
metrics:
|
1571 |
+
- type: accuracy
|
1572 |
+
value: 62.552118359112306
|
1573 |
+
- type: f1
|
1574 |
+
value: 61.354449605776765
|
1575 |
+
- task:
|
1576 |
+
type: Classification
|
1577 |
+
dataset:
|
1578 |
+
type: mteb/amazon_massive_scenario
|
1579 |
+
name: MTEB MassiveScenarioClassification (pt)
|
1580 |
+
config: pt
|
1581 |
+
split: test
|
1582 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1583 |
+
metrics:
|
1584 |
+
- type: accuracy
|
1585 |
+
value: 62.40753194351043
|
1586 |
+
- type: f1
|
1587 |
+
value: 61.98779889528889
|
1588 |
+
- task:
|
1589 |
+
type: Classification
|
1590 |
+
dataset:
|
1591 |
+
type: mteb/amazon_massive_scenario
|
1592 |
+
name: MTEB MassiveScenarioClassification (ro)
|
1593 |
+
config: ro
|
1594 |
+
split: test
|
1595 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1596 |
+
metrics:
|
1597 |
+
- type: accuracy
|
1598 |
+
value: 60.68258238063214
|
1599 |
+
- type: f1
|
1600 |
+
value: 60.59973978976571
|
1601 |
+
- task:
|
1602 |
+
type: Classification
|
1603 |
+
dataset:
|
1604 |
+
type: mteb/amazon_massive_scenario
|
1605 |
+
name: MTEB MassiveScenarioClassification (ru)
|
1606 |
+
config: ru
|
1607 |
+
split: test
|
1608 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1609 |
+
metrics:
|
1610 |
+
- type: accuracy
|
1611 |
+
value: 62.31002017484868
|
1612 |
+
- type: f1
|
1613 |
+
value: 62.412312268503655
|
1614 |
+
- task:
|
1615 |
+
type: Classification
|
1616 |
+
dataset:
|
1617 |
+
type: mteb/amazon_massive_scenario
|
1618 |
+
name: MTEB MassiveScenarioClassification (sl)
|
1619 |
+
config: sl
|
1620 |
+
split: test
|
1621 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1622 |
+
metrics:
|
1623 |
+
- type: accuracy
|
1624 |
+
value: 61.429051782111635
|
1625 |
+
- type: f1
|
1626 |
+
value: 61.60095590401424
|
1627 |
+
- task:
|
1628 |
+
type: Classification
|
1629 |
+
dataset:
|
1630 |
+
type: mteb/amazon_massive_scenario
|
1631 |
+
name: MTEB MassiveScenarioClassification (sq)
|
1632 |
+
config: sq
|
1633 |
+
split: test
|
1634 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1635 |
+
metrics:
|
1636 |
+
- type: accuracy
|
1637 |
+
value: 62.229320780094156
|
1638 |
+
- type: f1
|
1639 |
+
value: 61.02251426747547
|
1640 |
+
- task:
|
1641 |
+
type: Classification
|
1642 |
+
dataset:
|
1643 |
+
type: mteb/amazon_massive_scenario
|
1644 |
+
name: MTEB MassiveScenarioClassification (sv)
|
1645 |
+
config: sv
|
1646 |
+
split: test
|
1647 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1648 |
+
metrics:
|
1649 |
+
- type: accuracy
|
1650 |
+
value: 64.42501681237391
|
1651 |
+
- type: f1
|
1652 |
+
value: 63.461494430605235
|
1653 |
+
- task:
|
1654 |
+
type: Classification
|
1655 |
+
dataset:
|
1656 |
+
type: mteb/amazon_massive_scenario
|
1657 |
+
name: MTEB MassiveScenarioClassification (sw)
|
1658 |
+
config: sw
|
1659 |
+
split: test
|
1660 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1661 |
+
metrics:
|
1662 |
+
- type: accuracy
|
1663 |
+
value: 38.51714862138534
|
1664 |
+
- type: f1
|
1665 |
+
value: 37.12466722986362
|
1666 |
+
- task:
|
1667 |
+
type: Classification
|
1668 |
+
dataset:
|
1669 |
+
type: mteb/amazon_massive_scenario
|
1670 |
+
name: MTEB MassiveScenarioClassification (ta)
|
1671 |
+
config: ta
|
1672 |
+
split: test
|
1673 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1674 |
+
metrics:
|
1675 |
+
- type: accuracy
|
1676 |
+
value: 46.99731002017485
|
1677 |
+
- type: f1
|
1678 |
+
value: 45.859147049984834
|
1679 |
+
- task:
|
1680 |
+
type: Classification
|
1681 |
+
dataset:
|
1682 |
+
type: mteb/amazon_massive_scenario
|
1683 |
+
name: MTEB MassiveScenarioClassification (te)
|
1684 |
+
config: te
|
1685 |
+
split: test
|
1686 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1687 |
+
metrics:
|
1688 |
+
- type: accuracy
|
1689 |
+
value: 51.01882985877605
|
1690 |
+
- type: f1
|
1691 |
+
value: 49.01040173136056
|
1692 |
+
- task:
|
1693 |
+
type: Classification
|
1694 |
+
dataset:
|
1695 |
+
type: mteb/amazon_massive_scenario
|
1696 |
+
name: MTEB MassiveScenarioClassification (th)
|
1697 |
+
config: th
|
1698 |
+
split: test
|
1699 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1700 |
+
metrics:
|
1701 |
+
- type: accuracy
|
1702 |
+
value: 63.234700739744454
|
1703 |
+
- type: f1
|
1704 |
+
value: 62.732294595214746
|
1705 |
+
- task:
|
1706 |
+
type: Classification
|
1707 |
+
dataset:
|
1708 |
+
type: mteb/amazon_massive_scenario
|
1709 |
+
name: MTEB MassiveScenarioClassification (tl)
|
1710 |
+
config: tl
|
1711 |
+
split: test
|
1712 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1713 |
+
metrics:
|
1714 |
+
- type: accuracy
|
1715 |
+
value: 38.72225958305312
|
1716 |
+
- type: f1
|
1717 |
+
value: 36.603231928120906
|
1718 |
+
- task:
|
1719 |
+
type: Classification
|
1720 |
+
dataset:
|
1721 |
+
type: mteb/amazon_massive_scenario
|
1722 |
+
name: MTEB MassiveScenarioClassification (tr)
|
1723 |
+
config: tr
|
1724 |
+
split: test
|
1725 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1726 |
+
metrics:
|
1727 |
+
- type: accuracy
|
1728 |
+
value: 64.48554135843982
|
1729 |
+
- type: f1
|
1730 |
+
value: 63.97380562022752
|
1731 |
+
- task:
|
1732 |
+
type: Classification
|
1733 |
+
dataset:
|
1734 |
+
type: mteb/amazon_massive_scenario
|
1735 |
+
name: MTEB MassiveScenarioClassification (ur)
|
1736 |
+
config: ur
|
1737 |
+
split: test
|
1738 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1739 |
+
metrics:
|
1740 |
+
- type: accuracy
|
1741 |
+
value: 56.7955615332885
|
1742 |
+
- type: f1
|
1743 |
+
value: 55.95308241204802
|
1744 |
+
- task:
|
1745 |
+
type: Classification
|
1746 |
+
dataset:
|
1747 |
+
type: mteb/amazon_massive_scenario
|
1748 |
+
name: MTEB MassiveScenarioClassification (vi)
|
1749 |
+
config: vi
|
1750 |
+
split: test
|
1751 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1752 |
+
metrics:
|
1753 |
+
- type: accuracy
|
1754 |
+
value: 57.06455951580362
|
1755 |
+
- type: f1
|
1756 |
+
value: 56.95570494066693
|
1757 |
+
- task:
|
1758 |
+
type: Classification
|
1759 |
+
dataset:
|
1760 |
+
type: mteb/amazon_massive_scenario
|
1761 |
+
name: MTEB MassiveScenarioClassification (zh-CN)
|
1762 |
+
config: zh-CN
|
1763 |
+
split: test
|
1764 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1765 |
+
metrics:
|
1766 |
+
- type: accuracy
|
1767 |
+
value: 65.8338937457969
|
1768 |
+
- type: f1
|
1769 |
+
value: 65.6778746906008
|
1770 |
+
- task:
|
1771 |
+
type: Classification
|
1772 |
+
dataset:
|
1773 |
+
type: mteb/amazon_massive_scenario
|
1774 |
+
name: MTEB MassiveScenarioClassification (zh-TW)
|
1775 |
+
config: zh-TW
|
1776 |
+
split: test
|
1777 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1778 |
+
metrics:
|
1779 |
+
- type: accuracy
|
1780 |
+
value: 63.369199731002034
|
1781 |
+
- type: f1
|
1782 |
+
value: 63.527650116059945
|
1783 |
+
- task:
|
1784 |
+
type: Clustering
|
1785 |
+
dataset:
|
1786 |
+
type: mteb/medrxiv-clustering-p2p
|
1787 |
+
name: MTEB MedrxivClusteringP2P
|
1788 |
+
config: default
|
1789 |
+
split: test
|
1790 |
+
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
|
1791 |
+
metrics:
|
1792 |
+
- type: v_measure
|
1793 |
+
value: 29.442504112215538
|
1794 |
+
- task:
|
1795 |
+
type: Clustering
|
1796 |
+
dataset:
|
1797 |
+
type: mteb/medrxiv-clustering-s2s
|
1798 |
+
name: MTEB MedrxivClusteringS2S
|
1799 |
+
config: default
|
1800 |
+
split: test
|
1801 |
+
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
|
1802 |
+
metrics:
|
1803 |
+
- type: v_measure
|
1804 |
+
value: 26.16062814161053
|
1805 |
+
- task:
|
1806 |
+
type: Retrieval
|
1807 |
+
dataset:
|
1808 |
+
type: quora
|
1809 |
+
name: MTEB QuoraRetrieval
|
1810 |
+
config: default
|
1811 |
+
split: test
|
1812 |
+
revision: None
|
1813 |
+
metrics:
|
1814 |
+
- type: map_at_1
|
1815 |
+
value: 65.319
|
1816 |
+
- type: map_at_10
|
1817 |
+
value: 78.72
|
1818 |
+
- type: map_at_100
|
1819 |
+
value: 79.44600000000001
|
1820 |
+
- type: map_at_1000
|
1821 |
+
value: 79.469
|
1822 |
+
- type: map_at_3
|
1823 |
+
value: 75.693
|
1824 |
+
- type: map_at_5
|
1825 |
+
value: 77.537
|
1826 |
+
- type: mrr_at_1
|
1827 |
+
value: 75.24
|
1828 |
+
- type: mrr_at_10
|
1829 |
+
value: 82.304
|
1830 |
+
- type: mrr_at_100
|
1831 |
+
value: 82.485
|
1832 |
+
- type: mrr_at_1000
|
1833 |
+
value: 82.489
|
1834 |
+
- type: mrr_at_3
|
1835 |
+
value: 81.002
|
1836 |
+
- type: mrr_at_5
|
1837 |
+
value: 81.817
|
1838 |
+
- type: ndcg_at_1
|
1839 |
+
value: 75.26
|
1840 |
+
- type: ndcg_at_10
|
1841 |
+
value: 83.07
|
1842 |
+
- type: ndcg_at_100
|
1843 |
+
value: 84.829
|
1844 |
+
- type: ndcg_at_1000
|
1845 |
+
value: 85.087
|
1846 |
+
- type: ndcg_at_3
|
1847 |
+
value: 79.67699999999999
|
1848 |
+
- type: ndcg_at_5
|
1849 |
+
value: 81.42
|
1850 |
+
- type: precision_at_1
|
1851 |
+
value: 75.26
|
1852 |
+
- type: precision_at_10
|
1853 |
+
value: 12.697
|
1854 |
+
- type: precision_at_100
|
1855 |
+
value: 1.4829999999999999
|
1856 |
+
- type: precision_at_1000
|
1857 |
+
value: 0.154
|
1858 |
+
- type: precision_at_3
|
1859 |
+
value: 34.849999999999994
|
1860 |
+
- type: precision_at_5
|
1861 |
+
value: 23.054
|
1862 |
+
- type: recall_at_1
|
1863 |
+
value: 65.319
|
1864 |
+
- type: recall_at_10
|
1865 |
+
value: 91.551
|
1866 |
+
- type: recall_at_100
|
1867 |
+
value: 98.053
|
1868 |
+
- type: recall_at_1000
|
1869 |
+
value: 99.516
|
1870 |
+
- type: recall_at_3
|
1871 |
+
value: 81.819
|
1872 |
+
- type: recall_at_5
|
1873 |
+
value: 86.66199999999999
|
1874 |
+
- task:
|
1875 |
+
type: Clustering
|
1876 |
+
dataset:
|
1877 |
+
type: mteb/reddit-clustering
|
1878 |
+
name: MTEB RedditClustering
|
1879 |
+
config: default
|
1880 |
+
split: test
|
1881 |
+
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
|
1882 |
+
metrics:
|
1883 |
+
- type: v_measure
|
1884 |
+
value: 31.249791587189996
|
1885 |
+
- task:
|
1886 |
+
type: Clustering
|
1887 |
+
dataset:
|
1888 |
+
type: mteb/reddit-clustering-p2p
|
1889 |
+
name: MTEB RedditClusteringP2P
|
1890 |
+
config: default
|
1891 |
+
split: test
|
1892 |
+
revision: 282350215ef01743dc01b456c7f5241fa8937f16
|
1893 |
+
metrics:
|
1894 |
+
- type: v_measure
|
1895 |
+
value: 43.302922383029816
|
1896 |
+
- task:
|
1897 |
+
type: STS
|
1898 |
+
dataset:
|
1899 |
+
type: mteb/sickr-sts
|
1900 |
+
name: MTEB SICK-R
|
1901 |
+
config: default
|
1902 |
+
split: test
|
1903 |
+
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
|
1904 |
+
metrics:
|
1905 |
+
- type: cos_sim_pearson
|
1906 |
+
value: 84.80670811345861
|
1907 |
+
- type: cos_sim_spearman
|
1908 |
+
value: 79.97373018384307
|
1909 |
+
- type: euclidean_pearson
|
1910 |
+
value: 83.40205934125837
|
1911 |
+
- type: euclidean_spearman
|
1912 |
+
value: 79.73331008251854
|
1913 |
+
- type: manhattan_pearson
|
1914 |
+
value: 83.3320983393412
|
1915 |
+
- type: manhattan_spearman
|
1916 |
+
value: 79.677919746045
|
1917 |
+
- task:
|
1918 |
+
type: STS
|
1919 |
+
dataset:
|
1920 |
+
type: mteb/sts12-sts
|
1921 |
+
name: MTEB STS12
|
1922 |
+
config: default
|
1923 |
+
split: test
|
1924 |
+
revision: a0d554a64d88156834ff5ae9920b964011b16384
|
1925 |
+
metrics:
|
1926 |
+
- type: cos_sim_pearson
|
1927 |
+
value: 86.3816087627948
|
1928 |
+
- type: cos_sim_spearman
|
1929 |
+
value: 80.91314664846955
|
1930 |
+
- type: euclidean_pearson
|
1931 |
+
value: 85.10603071031096
|
1932 |
+
- type: euclidean_spearman
|
1933 |
+
value: 79.42663939501841
|
1934 |
+
- type: manhattan_pearson
|
1935 |
+
value: 85.16096376014066
|
1936 |
+
- type: manhattan_spearman
|
1937 |
+
value: 79.51936545543191
|
1938 |
+
- task:
|
1939 |
+
type: STS
|
1940 |
+
dataset:
|
1941 |
+
type: mteb/sts13-sts
|
1942 |
+
name: MTEB STS13
|
1943 |
+
config: default
|
1944 |
+
split: test
|
1945 |
+
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
|
1946 |
+
metrics:
|
1947 |
+
- type: cos_sim_pearson
|
1948 |
+
value: 80.44665329940209
|
1949 |
+
- type: cos_sim_spearman
|
1950 |
+
value: 82.86479010707745
|
1951 |
+
- type: euclidean_pearson
|
1952 |
+
value: 84.06719627734672
|
1953 |
+
- type: euclidean_spearman
|
1954 |
+
value: 84.9356099976297
|
1955 |
+
- type: manhattan_pearson
|
1956 |
+
value: 84.10370009572624
|
1957 |
+
- type: manhattan_spearman
|
1958 |
+
value: 84.96828040546536
|
1959 |
+
- task:
|
1960 |
+
type: STS
|
1961 |
+
dataset:
|
1962 |
+
type: mteb/sts14-sts
|
1963 |
+
name: MTEB STS14
|
1964 |
+
config: default
|
1965 |
+
split: test
|
1966 |
+
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
|
1967 |
+
metrics:
|
1968 |
+
- type: cos_sim_pearson
|
1969 |
+
value: 86.05704260568437
|
1970 |
+
- type: cos_sim_spearman
|
1971 |
+
value: 87.36399473803172
|
1972 |
+
- type: euclidean_pearson
|
1973 |
+
value: 86.8895170159388
|
1974 |
+
- type: euclidean_spearman
|
1975 |
+
value: 87.16246440866921
|
1976 |
+
- type: manhattan_pearson
|
1977 |
+
value: 86.80814774538997
|
1978 |
+
- type: manhattan_spearman
|
1979 |
+
value: 87.09320142699522
|
1980 |
+
- task:
|
1981 |
+
type: STS
|
1982 |
+
dataset:
|
1983 |
+
type: mteb/sts15-sts
|
1984 |
+
name: MTEB STS15
|
1985 |
+
config: default
|
1986 |
+
split: test
|
1987 |
+
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
|
1988 |
+
metrics:
|
1989 |
+
- type: cos_sim_pearson
|
1990 |
+
value: 85.97825118945852
|
1991 |
+
- type: cos_sim_spearman
|
1992 |
+
value: 88.31438033558268
|
1993 |
+
- type: euclidean_pearson
|
1994 |
+
value: 87.05174694758092
|
1995 |
+
- type: euclidean_spearman
|
1996 |
+
value: 87.80659468392355
|
1997 |
+
- type: manhattan_pearson
|
1998 |
+
value: 86.98831322198717
|
1999 |
+
- type: manhattan_spearman
|
2000 |
+
value: 87.72820615049285
|
2001 |
+
- task:
|
2002 |
+
type: STS
|
2003 |
+
dataset:
|
2004 |
+
type: mteb/sts16-sts
|
2005 |
+
name: MTEB STS16
|
2006 |
+
config: default
|
2007 |
+
split: test
|
2008 |
+
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
|
2009 |
+
metrics:
|
2010 |
+
- type: cos_sim_pearson
|
2011 |
+
value: 78.68745420126719
|
2012 |
+
- type: cos_sim_spearman
|
2013 |
+
value: 81.6058424699445
|
2014 |
+
- type: euclidean_pearson
|
2015 |
+
value: 81.16540133861879
|
2016 |
+
- type: euclidean_spearman
|
2017 |
+
value: 81.86377535458067
|
2018 |
+
- type: manhattan_pearson
|
2019 |
+
value: 81.13813317937021
|
2020 |
+
- type: manhattan_spearman
|
2021 |
+
value: 81.87079962857256
|
2022 |
+
- task:
|
2023 |
+
type: STS
|
2024 |
+
dataset:
|
2025 |
+
type: mteb/sts17-crosslingual-sts
|
2026 |
+
name: MTEB STS17 (ko-ko)
|
2027 |
+
config: ko-ko
|
2028 |
+
split: test
|
2029 |
+
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
2030 |
+
metrics:
|
2031 |
+
- type: cos_sim_pearson
|
2032 |
+
value: 68.06192660936868
|
2033 |
+
- type: cos_sim_spearman
|
2034 |
+
value: 68.2376353514075
|
2035 |
+
- type: euclidean_pearson
|
2036 |
+
value: 60.68326946956215
|
2037 |
+
- type: euclidean_spearman
|
2038 |
+
value: 59.19352349785952
|
2039 |
+
- type: manhattan_pearson
|
2040 |
+
value: 60.6592944683418
|
2041 |
+
- type: manhattan_spearman
|
2042 |
+
value: 59.167534419270865
|
2043 |
+
- task:
|
2044 |
+
type: STS
|
2045 |
+
dataset:
|
2046 |
+
type: mteb/sts17-crosslingual-sts
|
2047 |
+
name: MTEB STS17 (ar-ar)
|
2048 |
+
config: ar-ar
|
2049 |
+
split: test
|
2050 |
+
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
2051 |
+
metrics:
|
2052 |
+
- type: cos_sim_pearson
|
2053 |
+
value: 76.78098264855684
|
2054 |
+
- type: cos_sim_spearman
|
2055 |
+
value: 78.02670452969812
|
2056 |
+
- type: euclidean_pearson
|
2057 |
+
value: 77.26694463661255
|
2058 |
+
- type: euclidean_spearman
|
2059 |
+
value: 77.47007626009587
|
2060 |
+
- type: manhattan_pearson
|
2061 |
+
value: 77.25070088632027
|
2062 |
+
- type: manhattan_spearman
|
2063 |
+
value: 77.36368265830724
|
2064 |
+
- task:
|
2065 |
+
type: STS
|
2066 |
+
dataset:
|
2067 |
+
type: mteb/sts17-crosslingual-sts
|
2068 |
+
name: MTEB STS17 (en-ar)
|
2069 |
+
config: en-ar
|
2070 |
+
split: test
|
2071 |
+
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
2072 |
+
metrics:
|
2073 |
+
- type: cos_sim_pearson
|
2074 |
+
value: 78.45418506379532
|
2075 |
+
- type: cos_sim_spearman
|
2076 |
+
value: 78.60412019902428
|
2077 |
+
- type: euclidean_pearson
|
2078 |
+
value: 79.90303710850512
|
2079 |
+
- type: euclidean_spearman
|
2080 |
+
value: 78.67123625004957
|
2081 |
+
- type: manhattan_pearson
|
2082 |
+
value: 80.09189580897753
|
2083 |
+
- type: manhattan_spearman
|
2084 |
+
value: 79.02484481441483
|
2085 |
+
- task:
|
2086 |
+
type: STS
|
2087 |
+
dataset:
|
2088 |
+
type: mteb/sts17-crosslingual-sts
|
2089 |
+
name: MTEB STS17 (en-de)
|
2090 |
+
config: en-de
|
2091 |
+
split: test
|
2092 |
+
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
2093 |
+
metrics:
|
2094 |
+
- type: cos_sim_pearson
|
2095 |
+
value: 82.35556731232779
|
2096 |
+
- type: cos_sim_spearman
|
2097 |
+
value: 81.48249735354844
|
2098 |
+
- type: euclidean_pearson
|
2099 |
+
value: 81.66748026636621
|
2100 |
+
- type: euclidean_spearman
|
2101 |
+
value: 80.35571574338547
|
2102 |
+
- type: manhattan_pearson
|
2103 |
+
value: 81.38214732806365
|
2104 |
+
- type: manhattan_spearman
|
2105 |
+
value: 79.9018202958774
|
2106 |
+
- task:
|
2107 |
+
type: STS
|
2108 |
+
dataset:
|
2109 |
+
type: mteb/sts17-crosslingual-sts
|
2110 |
+
name: MTEB STS17 (en-en)
|
2111 |
+
config: en-en
|
2112 |
+
split: test
|
2113 |
+
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
2114 |
+
metrics:
|
2115 |
+
- type: cos_sim_pearson
|
2116 |
+
value: 86.4527703176897
|
2117 |
+
- type: cos_sim_spearman
|
2118 |
+
value: 85.81084095829584
|
2119 |
+
- type: euclidean_pearson
|
2120 |
+
value: 86.43489162324457
|
2121 |
+
- type: euclidean_spearman
|
2122 |
+
value: 85.27110976093296
|
2123 |
+
- type: manhattan_pearson
|
2124 |
+
value: 86.43674259444512
|
2125 |
+
- type: manhattan_spearman
|
2126 |
+
value: 85.05719308026032
|
2127 |
+
- task:
|
2128 |
+
type: STS
|
2129 |
+
dataset:
|
2130 |
+
type: mteb/sts17-crosslingual-sts
|
2131 |
+
name: MTEB STS17 (en-tr)
|
2132 |
+
config: en-tr
|
2133 |
+
split: test
|
2134 |
+
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
2135 |
+
metrics:
|
2136 |
+
- type: cos_sim_pearson
|
2137 |
+
value: 76.00411240034492
|
2138 |
+
- type: cos_sim_spearman
|
2139 |
+
value: 76.33887356560854
|
2140 |
+
- type: euclidean_pearson
|
2141 |
+
value: 76.81730660019446
|
2142 |
+
- type: euclidean_spearman
|
2143 |
+
value: 75.04432185451306
|
2144 |
+
- type: manhattan_pearson
|
2145 |
+
value: 77.22298813168995
|
2146 |
+
- type: manhattan_spearman
|
2147 |
+
value: 75.56420330256725
|
2148 |
+
- task:
|
2149 |
+
type: STS
|
2150 |
+
dataset:
|
2151 |
+
type: mteb/sts17-crosslingual-sts
|
2152 |
+
name: MTEB STS17 (es-en)
|
2153 |
+
config: es-en
|
2154 |
+
split: test
|
2155 |
+
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
2156 |
+
metrics:
|
2157 |
+
- type: cos_sim_pearson
|
2158 |
+
value: 79.1447136836213
|
2159 |
+
- type: cos_sim_spearman
|
2160 |
+
value: 81.80823850788917
|
2161 |
+
- type: euclidean_pearson
|
2162 |
+
value: 80.84505734814422
|
2163 |
+
- type: euclidean_spearman
|
2164 |
+
value: 81.714168092736
|
2165 |
+
- type: manhattan_pearson
|
2166 |
+
value: 80.84713816174187
|
2167 |
+
- type: manhattan_spearman
|
2168 |
+
value: 81.61267814749516
|
2169 |
+
- task:
|
2170 |
+
type: STS
|
2171 |
+
dataset:
|
2172 |
+
type: mteb/sts17-crosslingual-sts
|
2173 |
+
name: MTEB STS17 (es-es)
|
2174 |
+
config: es-es
|
2175 |
+
split: test
|
2176 |
+
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
2177 |
+
metrics:
|
2178 |
+
- type: cos_sim_pearson
|
2179 |
+
value: 87.01257457052873
|
2180 |
+
- type: cos_sim_spearman
|
2181 |
+
value: 87.91146458004216
|
2182 |
+
- type: euclidean_pearson
|
2183 |
+
value: 88.36771859717994
|
2184 |
+
- type: euclidean_spearman
|
2185 |
+
value: 87.73182474597515
|
2186 |
+
- type: manhattan_pearson
|
2187 |
+
value: 88.26551451003671
|
2188 |
+
- type: manhattan_spearman
|
2189 |
+
value: 87.71675151388992
|
2190 |
+
- task:
|
2191 |
+
type: STS
|
2192 |
+
dataset:
|
2193 |
+
type: mteb/sts17-crosslingual-sts
|
2194 |
+
name: MTEB STS17 (fr-en)
|
2195 |
+
config: fr-en
|
2196 |
+
split: test
|
2197 |
+
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
2198 |
+
metrics:
|
2199 |
+
- type: cos_sim_pearson
|
2200 |
+
value: 79.20121618382373
|
2201 |
+
- type: cos_sim_spearman
|
2202 |
+
value: 78.05794691968603
|
2203 |
+
- type: euclidean_pearson
|
2204 |
+
value: 79.93819925682054
|
2205 |
+
- type: euclidean_spearman
|
2206 |
+
value: 78.00586118701553
|
2207 |
+
- type: manhattan_pearson
|
2208 |
+
value: 80.05598625820885
|
2209 |
+
- type: manhattan_spearman
|
2210 |
+
value: 78.04802948866832
|
2211 |
+
- task:
|
2212 |
+
type: STS
|
2213 |
+
dataset:
|
2214 |
+
type: mteb/sts17-crosslingual-sts
|
2215 |
+
name: MTEB STS17 (it-en)
|
2216 |
+
config: it-en
|
2217 |
+
split: test
|
2218 |
+
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
2219 |
+
metrics:
|
2220 |
+
- type: cos_sim_pearson
|
2221 |
+
value: 81.51743373871778
|
2222 |
+
- type: cos_sim_spearman
|
2223 |
+
value: 80.98266651818703
|
2224 |
+
- type: euclidean_pearson
|
2225 |
+
value: 81.11875722505269
|
2226 |
+
- type: euclidean_spearman
|
2227 |
+
value: 79.45188413284538
|
2228 |
+
- type: manhattan_pearson
|
2229 |
+
value: 80.7988457619225
|
2230 |
+
- type: manhattan_spearman
|
2231 |
+
value: 79.49643569311485
|
2232 |
+
- task:
|
2233 |
+
type: STS
|
2234 |
+
dataset:
|
2235 |
+
type: mteb/sts17-crosslingual-sts
|
2236 |
+
name: MTEB STS17 (nl-en)
|
2237 |
+
config: nl-en
|
2238 |
+
split: test
|
2239 |
+
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
2240 |
+
metrics:
|
2241 |
+
- type: cos_sim_pearson
|
2242 |
+
value: 81.78679924046351
|
2243 |
+
- type: cos_sim_spearman
|
2244 |
+
value: 80.9986574147117
|
2245 |
+
- type: euclidean_pearson
|
2246 |
+
value: 82.09130079135713
|
2247 |
+
- type: euclidean_spearman
|
2248 |
+
value: 80.66215667390159
|
2249 |
+
- type: manhattan_pearson
|
2250 |
+
value: 82.0328610549654
|
2251 |
+
- type: manhattan_spearman
|
2252 |
+
value: 80.31047226932408
|
2253 |
+
- task:
|
2254 |
+
type: STS
|
2255 |
+
dataset:
|
2256 |
+
type: mteb/sts22-crosslingual-sts
|
2257 |
+
name: MTEB STS22 (en)
|
2258 |
+
config: en
|
2259 |
+
split: test
|
2260 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
2261 |
+
metrics:
|
2262 |
+
- type: cos_sim_pearson
|
2263 |
+
value: 58.08082172994642
|
2264 |
+
- type: cos_sim_spearman
|
2265 |
+
value: 62.9940530222459
|
2266 |
+
- type: euclidean_pearson
|
2267 |
+
value: 58.47927303460365
|
2268 |
+
- type: euclidean_spearman
|
2269 |
+
value: 60.8440317609258
|
2270 |
+
- type: manhattan_pearson
|
2271 |
+
value: 58.32438211697841
|
2272 |
+
- type: manhattan_spearman
|
2273 |
+
value: 60.69642636776064
|
2274 |
+
- task:
|
2275 |
+
type: STS
|
2276 |
+
dataset:
|
2277 |
+
type: mteb/sts22-crosslingual-sts
|
2278 |
+
name: MTEB STS22 (de)
|
2279 |
+
config: de
|
2280 |
+
split: test
|
2281 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
2282 |
+
metrics:
|
2283 |
+
- type: cos_sim_pearson
|
2284 |
+
value: 33.83985707464123
|
2285 |
+
- type: cos_sim_spearman
|
2286 |
+
value: 46.89093209603036
|
2287 |
+
- type: euclidean_pearson
|
2288 |
+
value: 34.63602187576556
|
2289 |
+
- type: euclidean_spearman
|
2290 |
+
value: 46.31087228200712
|
2291 |
+
- type: manhattan_pearson
|
2292 |
+
value: 34.66899391543166
|
2293 |
+
- type: manhattan_spearman
|
2294 |
+
value: 46.33049538425276
|
2295 |
+
- task:
|
2296 |
+
type: STS
|
2297 |
+
dataset:
|
2298 |
+
type: mteb/sts22-crosslingual-sts
|
2299 |
+
name: MTEB STS22 (es)
|
2300 |
+
config: es
|
2301 |
+
split: test
|
2302 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
2303 |
+
metrics:
|
2304 |
+
- type: cos_sim_pearson
|
2305 |
+
value: 51.61315965767736
|
2306 |
+
- type: cos_sim_spearman
|
2307 |
+
value: 58.9434266730386
|
2308 |
+
- type: euclidean_pearson
|
2309 |
+
value: 50.35885602217862
|
2310 |
+
- type: euclidean_spearman
|
2311 |
+
value: 58.238679883286025
|
2312 |
+
- type: manhattan_pearson
|
2313 |
+
value: 53.01732044381151
|
2314 |
+
- type: manhattan_spearman
|
2315 |
+
value: 58.10482351761412
|
2316 |
+
- task:
|
2317 |
+
type: STS
|
2318 |
+
dataset:
|
2319 |
+
type: mteb/sts22-crosslingual-sts
|
2320 |
+
name: MTEB STS22 (pl)
|
2321 |
+
config: pl
|
2322 |
+
split: test
|
2323 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
2324 |
+
metrics:
|
2325 |
+
- type: cos_sim_pearson
|
2326 |
+
value: 26.771738440430177
|
2327 |
+
- type: cos_sim_spearman
|
2328 |
+
value: 34.807259227816054
|
2329 |
+
- type: euclidean_pearson
|
2330 |
+
value: 17.82657835823811
|
2331 |
+
- type: euclidean_spearman
|
2332 |
+
value: 34.27912898498941
|
2333 |
+
- type: manhattan_pearson
|
2334 |
+
value: 19.121527758886312
|
2335 |
+
- type: manhattan_spearman
|
2336 |
+
value: 34.4940050226265
|
2337 |
+
- task:
|
2338 |
+
type: STS
|
2339 |
+
dataset:
|
2340 |
+
type: mteb/sts22-crosslingual-sts
|
2341 |
+
name: MTEB STS22 (tr)
|
2342 |
+
config: tr
|
2343 |
+
split: test
|
2344 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
2345 |
+
metrics:
|
2346 |
+
- type: cos_sim_pearson
|
2347 |
+
value: 52.8354704676683
|
2348 |
+
- type: cos_sim_spearman
|
2349 |
+
value: 57.28629534815841
|
2350 |
+
- type: euclidean_pearson
|
2351 |
+
value: 54.10329332004385
|
2352 |
+
- type: euclidean_spearman
|
2353 |
+
value: 58.15030615859976
|
2354 |
+
- type: manhattan_pearson
|
2355 |
+
value: 55.42372087433115
|
2356 |
+
- type: manhattan_spearman
|
2357 |
+
value: 57.52270736584036
|
2358 |
+
- task:
|
2359 |
+
type: STS
|
2360 |
+
dataset:
|
2361 |
+
type: mteb/sts22-crosslingual-sts
|
2362 |
+
name: MTEB STS22 (ar)
|
2363 |
+
config: ar
|
2364 |
+
split: test
|
2365 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
2366 |
+
metrics:
|
2367 |
+
- type: cos_sim_pearson
|
2368 |
+
value: 31.01976557986924
|
2369 |
+
- type: cos_sim_spearman
|
2370 |
+
value: 54.506959483927616
|
2371 |
+
- type: euclidean_pearson
|
2372 |
+
value: 36.917863022119086
|
2373 |
+
- type: euclidean_spearman
|
2374 |
+
value: 53.750194241538566
|
2375 |
+
- type: manhattan_pearson
|
2376 |
+
value: 37.200177833241085
|
2377 |
+
- type: manhattan_spearman
|
2378 |
+
value: 53.507659188082535
|
2379 |
+
- task:
|
2380 |
+
type: STS
|
2381 |
+
dataset:
|
2382 |
+
type: mteb/sts22-crosslingual-sts
|
2383 |
+
name: MTEB STS22 (ru)
|
2384 |
+
config: ru
|
2385 |
+
split: test
|
2386 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
2387 |
+
metrics:
|
2388 |
+
- type: cos_sim_pearson
|
2389 |
+
value: 46.38635647225934
|
2390 |
+
- type: cos_sim_spearman
|
2391 |
+
value: 54.50892732637536
|
2392 |
+
- type: euclidean_pearson
|
2393 |
+
value: 40.8331015184763
|
2394 |
+
- type: euclidean_spearman
|
2395 |
+
value: 53.142903182230924
|
2396 |
+
- type: manhattan_pearson
|
2397 |
+
value: 43.07655692906317
|
2398 |
+
- type: manhattan_spearman
|
2399 |
+
value: 53.5833474125901
|
2400 |
+
- task:
|
2401 |
+
type: STS
|
2402 |
+
dataset:
|
2403 |
+
type: mteb/sts22-crosslingual-sts
|
2404 |
+
name: MTEB STS22 (zh)
|
2405 |
+
config: zh
|
2406 |
+
split: test
|
2407 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
2408 |
+
metrics:
|
2409 |
+
- type: cos_sim_pearson
|
2410 |
+
value: 60.52525456662916
|
2411 |
+
- type: cos_sim_spearman
|
2412 |
+
value: 63.23975489531082
|
2413 |
+
- type: euclidean_pearson
|
2414 |
+
value: 58.989191722317514
|
2415 |
+
- type: euclidean_spearman
|
2416 |
+
value: 62.536326639863894
|
2417 |
+
- type: manhattan_pearson
|
2418 |
+
value: 61.32982866201855
|
2419 |
+
- type: manhattan_spearman
|
2420 |
+
value: 63.068262822520516
|
2421 |
+
- task:
|
2422 |
+
type: STS
|
2423 |
+
dataset:
|
2424 |
+
type: mteb/sts22-crosslingual-sts
|
2425 |
+
name: MTEB STS22 (fr)
|
2426 |
+
config: fr
|
2427 |
+
split: test
|
2428 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
2429 |
+
metrics:
|
2430 |
+
- type: cos_sim_pearson
|
2431 |
+
value: 59.63798684577696
|
2432 |
+
- type: cos_sim_spearman
|
2433 |
+
value: 74.09937723367189
|
2434 |
+
- type: euclidean_pearson
|
2435 |
+
value: 63.77494904383906
|
2436 |
+
- type: euclidean_spearman
|
2437 |
+
value: 71.15932571292481
|
2438 |
+
- type: manhattan_pearson
|
2439 |
+
value: 63.69646122775205
|
2440 |
+
- type: manhattan_spearman
|
2441 |
+
value: 70.54960698541632
|
2442 |
+
- task:
|
2443 |
+
type: STS
|
2444 |
+
dataset:
|
2445 |
+
type: mteb/sts22-crosslingual-sts
|
2446 |
+
name: MTEB STS22 (de-en)
|
2447 |
+
config: de-en
|
2448 |
+
split: test
|
2449 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
2450 |
+
metrics:
|
2451 |
+
- type: cos_sim_pearson
|
2452 |
+
value: 36.50262468726711
|
2453 |
+
- type: cos_sim_spearman
|
2454 |
+
value: 45.00322499674274
|
2455 |
+
- type: euclidean_pearson
|
2456 |
+
value: 32.58759216581778
|
2457 |
+
- type: euclidean_spearman
|
2458 |
+
value: 40.13720951315429
|
2459 |
+
- type: manhattan_pearson
|
2460 |
+
value: 34.88422299605277
|
2461 |
+
- type: manhattan_spearman
|
2462 |
+
value: 40.63516862200963
|
2463 |
+
- task:
|
2464 |
+
type: STS
|
2465 |
+
dataset:
|
2466 |
+
type: mteb/sts22-crosslingual-sts
|
2467 |
+
name: MTEB STS22 (es-en)
|
2468 |
+
config: es-en
|
2469 |
+
split: test
|
2470 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
2471 |
+
metrics:
|
2472 |
+
- type: cos_sim_pearson
|
2473 |
+
value: 56.498552617040275
|
2474 |
+
- type: cos_sim_spearman
|
2475 |
+
value: 67.71358426124443
|
2476 |
+
- type: euclidean_pearson
|
2477 |
+
value: 57.16474781778287
|
2478 |
+
- type: euclidean_spearman
|
2479 |
+
value: 65.721515493531
|
2480 |
+
- type: manhattan_pearson
|
2481 |
+
value: 59.25227610738926
|
2482 |
+
- type: manhattan_spearman
|
2483 |
+
value: 65.89743680340739
|
2484 |
+
- task:
|
2485 |
+
type: STS
|
2486 |
+
dataset:
|
2487 |
+
type: mteb/sts22-crosslingual-sts
|
2488 |
+
name: MTEB STS22 (it)
|
2489 |
+
config: it
|
2490 |
+
split: test
|
2491 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
2492 |
+
metrics:
|
2493 |
+
- type: cos_sim_pearson
|
2494 |
+
value: 55.97978814727984
|
2495 |
+
- type: cos_sim_spearman
|
2496 |
+
value: 65.85821395092104
|
2497 |
+
- type: euclidean_pearson
|
2498 |
+
value: 59.11117270978519
|
2499 |
+
- type: euclidean_spearman
|
2500 |
+
value: 64.50062069934965
|
2501 |
+
- type: manhattan_pearson
|
2502 |
+
value: 59.4436213778161
|
2503 |
+
- type: manhattan_spearman
|
2504 |
+
value: 64.4003273074382
|
2505 |
+
- task:
|
2506 |
+
type: STS
|
2507 |
+
dataset:
|
2508 |
+
type: mteb/sts22-crosslingual-sts
|
2509 |
+
name: MTEB STS22 (pl-en)
|
2510 |
+
config: pl-en
|
2511 |
+
split: test
|
2512 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
2513 |
+
metrics:
|
2514 |
+
- type: cos_sim_pearson
|
2515 |
+
value: 58.00873192515712
|
2516 |
+
- type: cos_sim_spearman
|
2517 |
+
value: 60.167708809138745
|
2518 |
+
- type: euclidean_pearson
|
2519 |
+
value: 56.91950637760252
|
2520 |
+
- type: euclidean_spearman
|
2521 |
+
value: 58.50593399441014
|
2522 |
+
- type: manhattan_pearson
|
2523 |
+
value: 58.683747352584994
|
2524 |
+
- type: manhattan_spearman
|
2525 |
+
value: 59.38110066799761
|
2526 |
+
- task:
|
2527 |
+
type: STS
|
2528 |
+
dataset:
|
2529 |
+
type: mteb/sts22-crosslingual-sts
|
2530 |
+
name: MTEB STS22 (zh-en)
|
2531 |
+
config: zh-en
|
2532 |
+
split: test
|
2533 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
2534 |
+
metrics:
|
2535 |
+
- type: cos_sim_pearson
|
2536 |
+
value: 54.26020658151187
|
2537 |
+
- type: cos_sim_spearman
|
2538 |
+
value: 61.29236187204147
|
2539 |
+
- type: euclidean_pearson
|
2540 |
+
value: 55.993896804147056
|
2541 |
+
- type: euclidean_spearman
|
2542 |
+
value: 58.654928232615354
|
2543 |
+
- type: manhattan_pearson
|
2544 |
+
value: 56.612492816099426
|
2545 |
+
- type: manhattan_spearman
|
2546 |
+
value: 58.65144067094258
|
2547 |
+
- task:
|
2548 |
+
type: STS
|
2549 |
+
dataset:
|
2550 |
+
type: mteb/sts22-crosslingual-sts
|
2551 |
+
name: MTEB STS22 (es-it)
|
2552 |
+
config: es-it
|
2553 |
+
split: test
|
2554 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
2555 |
+
metrics:
|
2556 |
+
- type: cos_sim_pearson
|
2557 |
+
value: 49.13817835368122
|
2558 |
+
- type: cos_sim_spearman
|
2559 |
+
value: 50.78524216975442
|
2560 |
+
- type: euclidean_pearson
|
2561 |
+
value: 46.56046454501862
|
2562 |
+
- type: euclidean_spearman
|
2563 |
+
value: 50.3935060082369
|
2564 |
+
- type: manhattan_pearson
|
2565 |
+
value: 48.0232348418531
|
2566 |
+
- type: manhattan_spearman
|
2567 |
+
value: 50.79528358464199
|
2568 |
+
- task:
|
2569 |
+
type: STS
|
2570 |
+
dataset:
|
2571 |
+
type: mteb/sts22-crosslingual-sts
|
2572 |
+
name: MTEB STS22 (de-fr)
|
2573 |
+
config: de-fr
|
2574 |
+
split: test
|
2575 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
2576 |
+
metrics:
|
2577 |
+
- type: cos_sim_pearson
|
2578 |
+
value: 44.274388638585286
|
2579 |
+
- type: cos_sim_spearman
|
2580 |
+
value: 49.43124017389838
|
2581 |
+
- type: euclidean_pearson
|
2582 |
+
value: 42.45909582681174
|
2583 |
+
- type: euclidean_spearman
|
2584 |
+
value: 49.661383797129055
|
2585 |
+
- type: manhattan_pearson
|
2586 |
+
value: 42.5771970142383
|
2587 |
+
- type: manhattan_spearman
|
2588 |
+
value: 50.14423414390715
|
2589 |
+
- task:
|
2590 |
+
type: STS
|
2591 |
+
dataset:
|
2592 |
+
type: mteb/sts22-crosslingual-sts
|
2593 |
+
name: MTEB STS22 (de-pl)
|
2594 |
+
config: de-pl
|
2595 |
+
split: test
|
2596 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
2597 |
+
metrics:
|
2598 |
+
- type: cos_sim_pearson
|
2599 |
+
value: 26.119500839749776
|
2600 |
+
- type: cos_sim_spearman
|
2601 |
+
value: 39.324070169024424
|
2602 |
+
- type: euclidean_pearson
|
2603 |
+
value: 35.83247077201831
|
2604 |
+
- type: euclidean_spearman
|
2605 |
+
value: 42.61903924348457
|
2606 |
+
- type: manhattan_pearson
|
2607 |
+
value: 35.50415034487894
|
2608 |
+
- type: manhattan_spearman
|
2609 |
+
value: 41.87998075949351
|
2610 |
+
- task:
|
2611 |
+
type: STS
|
2612 |
+
dataset:
|
2613 |
+
type: mteb/sts22-crosslingual-sts
|
2614 |
+
name: MTEB STS22 (fr-pl)
|
2615 |
+
config: fr-pl
|
2616 |
+
split: test
|
2617 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
2618 |
+
metrics:
|
2619 |
+
- type: cos_sim_pearson
|
2620 |
+
value: 72.62575835691209
|
2621 |
+
- type: cos_sim_spearman
|
2622 |
+
value: 73.24670207647144
|
2623 |
+
- type: euclidean_pearson
|
2624 |
+
value: 78.07793323914657
|
2625 |
+
- type: euclidean_spearman
|
2626 |
+
value: 73.24670207647144
|
2627 |
+
- type: manhattan_pearson
|
2628 |
+
value: 77.51429306378206
|
2629 |
+
- type: manhattan_spearman
|
2630 |
+
value: 73.24670207647144
|
2631 |
+
- task:
|
2632 |
+
type: STS
|
2633 |
+
dataset:
|
2634 |
+
type: mteb/stsbenchmark-sts
|
2635 |
+
name: MTEB STSBenchmark
|
2636 |
+
config: default
|
2637 |
+
split: test
|
2638 |
+
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
|
2639 |
+
metrics:
|
2640 |
+
- type: cos_sim_pearson
|
2641 |
+
value: 84.09375596849891
|
2642 |
+
- type: cos_sim_spearman
|
2643 |
+
value: 86.44881302053585
|
2644 |
+
- type: euclidean_pearson
|
2645 |
+
value: 84.71259163967213
|
2646 |
+
- type: euclidean_spearman
|
2647 |
+
value: 85.63661992344069
|
2648 |
+
- type: manhattan_pearson
|
2649 |
+
value: 84.64466537502614
|
2650 |
+
- type: manhattan_spearman
|
2651 |
+
value: 85.53769949940238
|
2652 |
+
- task:
|
2653 |
+
type: Reranking
|
2654 |
+
dataset:
|
2655 |
+
type: mteb/scidocs-reranking
|
2656 |
+
name: MTEB SciDocsRR
|
2657 |
+
config: default
|
2658 |
+
split: test
|
2659 |
+
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
|
2660 |
+
metrics:
|
2661 |
+
- type: map
|
2662 |
+
value: 70.2056154684549
|
2663 |
+
- type: mrr
|
2664 |
+
value: 89.52703161036494
|
2665 |
+
- task:
|
2666 |
+
type: PairClassification
|
2667 |
+
dataset:
|
2668 |
+
type: mteb/sprintduplicatequestions-pairclassification
|
2669 |
+
name: MTEB SprintDuplicateQuestions
|
2670 |
+
config: default
|
2671 |
+
split: test
|
2672 |
+
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
|
2673 |
+
metrics:
|
2674 |
+
- type: cos_sim_accuracy
|
2675 |
+
value: 99.57623762376238
|
2676 |
+
- type: cos_sim_ap
|
2677 |
+
value: 83.53051588811371
|
2678 |
+
- type: cos_sim_f1
|
2679 |
+
value: 77.72704211060375
|
2680 |
+
- type: cos_sim_precision
|
2681 |
+
value: 78.88774459320288
|
2682 |
+
- type: cos_sim_recall
|
2683 |
+
value: 76.6
|
2684 |
+
- type: dot_accuracy
|
2685 |
+
value: 99.06435643564356
|
2686 |
+
- type: dot_ap
|
2687 |
+
value: 27.003124923857463
|
2688 |
+
- type: dot_f1
|
2689 |
+
value: 34.125269978401725
|
2690 |
+
- type: dot_precision
|
2691 |
+
value: 37.08920187793427
|
2692 |
+
- type: dot_recall
|
2693 |
+
value: 31.6
|
2694 |
+
- type: euclidean_accuracy
|
2695 |
+
value: 99.61485148514852
|
2696 |
+
- type: euclidean_ap
|
2697 |
+
value: 85.47332647001774
|
2698 |
+
- type: euclidean_f1
|
2699 |
+
value: 80.0808897876643
|
2700 |
+
- type: euclidean_precision
|
2701 |
+
value: 80.98159509202453
|
2702 |
+
- type: euclidean_recall
|
2703 |
+
value: 79.2
|
2704 |
+
- type: manhattan_accuracy
|
2705 |
+
value: 99.61683168316831
|
2706 |
+
- type: manhattan_ap
|
2707 |
+
value: 85.41969859598552
|
2708 |
+
- type: manhattan_f1
|
2709 |
+
value: 79.77755308392315
|
2710 |
+
- type: manhattan_precision
|
2711 |
+
value: 80.67484662576688
|
2712 |
+
- type: manhattan_recall
|
2713 |
+
value: 78.9
|
2714 |
+
- type: max_accuracy
|
2715 |
+
value: 99.61683168316831
|
2716 |
+
- type: max_ap
|
2717 |
+
value: 85.47332647001774
|
2718 |
+
- type: max_f1
|
2719 |
+
value: 80.0808897876643
|
2720 |
+
- task:
|
2721 |
+
type: Clustering
|
2722 |
+
dataset:
|
2723 |
+
type: mteb/stackexchange-clustering
|
2724 |
+
name: MTEB StackExchangeClustering
|
2725 |
+
config: default
|
2726 |
+
split: test
|
2727 |
+
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
|
2728 |
+
metrics:
|
2729 |
+
- type: v_measure
|
2730 |
+
value: 34.35688940053467
|
2731 |
+
- task:
|
2732 |
+
type: Clustering
|
2733 |
+
dataset:
|
2734 |
+
type: mteb/stackexchange-clustering-p2p
|
2735 |
+
name: MTEB StackExchangeClusteringP2P
|
2736 |
+
config: default
|
2737 |
+
split: test
|
2738 |
+
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
|
2739 |
+
metrics:
|
2740 |
+
- type: v_measure
|
2741 |
+
value: 30.64427069276576
|
2742 |
+
- task:
|
2743 |
+
type: Reranking
|
2744 |
+
dataset:
|
2745 |
+
type: mteb/stackoverflowdupquestions-reranking
|
2746 |
+
name: MTEB StackOverflowDupQuestions
|
2747 |
+
config: default
|
2748 |
+
split: test
|
2749 |
+
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
|
2750 |
+
metrics:
|
2751 |
+
- type: map
|
2752 |
+
value: 44.89500754900078
|
2753 |
+
- type: mrr
|
2754 |
+
value: 45.33215558950853
|
2755 |
+
- task:
|
2756 |
+
type: Summarization
|
2757 |
+
dataset:
|
2758 |
+
type: mteb/summeval
|
2759 |
+
name: MTEB SummEval
|
2760 |
+
config: default
|
2761 |
+
split: test
|
2762 |
+
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
|
2763 |
+
metrics:
|
2764 |
+
- type: cos_sim_pearson
|
2765 |
+
value: 30.653069624224084
|
2766 |
+
- type: cos_sim_spearman
|
2767 |
+
value: 30.10187112430319
|
2768 |
+
- type: dot_pearson
|
2769 |
+
value: 28.966278202103666
|
2770 |
+
- type: dot_spearman
|
2771 |
+
value: 28.342234095507767
|
2772 |
+
- task:
|
2773 |
+
type: Classification
|
2774 |
+
dataset:
|
2775 |
+
type: mteb/toxic_conversations_50k
|
2776 |
+
name: MTEB ToxicConversationsClassification
|
2777 |
+
config: default
|
2778 |
+
split: test
|
2779 |
+
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
|
2780 |
+
metrics:
|
2781 |
+
- type: accuracy
|
2782 |
+
value: 65.96839999999999
|
2783 |
+
- type: ap
|
2784 |
+
value: 11.846327590186444
|
2785 |
+
- type: f1
|
2786 |
+
value: 50.518102944693574
|
2787 |
+
- task:
|
2788 |
+
type: Classification
|
2789 |
+
dataset:
|
2790 |
+
type: mteb/tweet_sentiment_extraction
|
2791 |
+
name: MTEB TweetSentimentExtractionClassification
|
2792 |
+
config: default
|
2793 |
+
split: test
|
2794 |
+
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
|
2795 |
+
metrics:
|
2796 |
+
- type: accuracy
|
2797 |
+
value: 55.220713073005086
|
2798 |
+
- type: f1
|
2799 |
+
value: 55.47856175692088
|
2800 |
+
- task:
|
2801 |
+
type: Clustering
|
2802 |
+
dataset:
|
2803 |
+
type: mteb/twentynewsgroups-clustering
|
2804 |
+
name: MTEB TwentyNewsgroupsClustering
|
2805 |
+
config: default
|
2806 |
+
split: test
|
2807 |
+
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
|
2808 |
+
metrics:
|
2809 |
+
- type: v_measure
|
2810 |
+
value: 31.581473892235877
|
2811 |
+
- task:
|
2812 |
+
type: PairClassification
|
2813 |
+
dataset:
|
2814 |
+
type: mteb/twittersemeval2015-pairclassification
|
2815 |
+
name: MTEB TwitterSemEval2015
|
2816 |
+
config: default
|
2817 |
+
split: test
|
2818 |
+
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
|
2819 |
+
metrics:
|
2820 |
+
- type: cos_sim_accuracy
|
2821 |
+
value: 82.94093103653812
|
2822 |
+
- type: cos_sim_ap
|
2823 |
+
value: 62.48963249213361
|
2824 |
+
- type: cos_sim_f1
|
2825 |
+
value: 58.9541137429912
|
2826 |
+
- type: cos_sim_precision
|
2827 |
+
value: 52.05091937765205
|
2828 |
+
- type: cos_sim_recall
|
2829 |
+
value: 67.96833773087072
|
2830 |
+
- type: dot_accuracy
|
2831 |
+
value: 78.24998509864696
|
2832 |
+
- type: dot_ap
|
2833 |
+
value: 40.82371294480071
|
2834 |
+
- type: dot_f1
|
2835 |
+
value: 44.711163153786096
|
2836 |
+
- type: dot_precision
|
2837 |
+
value: 35.475379374419326
|
2838 |
+
- type: dot_recall
|
2839 |
+
value: 60.4485488126649
|
2840 |
+
- type: euclidean_accuracy
|
2841 |
+
value: 83.13166835548668
|
2842 |
+
- type: euclidean_ap
|
2843 |
+
value: 63.459878609769774
|
2844 |
+
- type: euclidean_f1
|
2845 |
+
value: 60.337199569532466
|
2846 |
+
- type: euclidean_precision
|
2847 |
+
value: 55.171659741963694
|
2848 |
+
- type: euclidean_recall
|
2849 |
+
value: 66.56992084432719
|
2850 |
+
- type: manhattan_accuracy
|
2851 |
+
value: 83.00649698992669
|
2852 |
+
- type: manhattan_ap
|
2853 |
+
value: 63.263161177904905
|
2854 |
+
- type: manhattan_f1
|
2855 |
+
value: 60.17122874713614
|
2856 |
+
- type: manhattan_precision
|
2857 |
+
value: 55.40750610703975
|
2858 |
+
- type: manhattan_recall
|
2859 |
+
value: 65.8311345646438
|
2860 |
+
- type: max_accuracy
|
2861 |
+
value: 83.13166835548668
|
2862 |
+
- type: max_ap
|
2863 |
+
value: 63.459878609769774
|
2864 |
+
- type: max_f1
|
2865 |
+
value: 60.337199569532466
|
2866 |
+
- task:
|
2867 |
+
type: PairClassification
|
2868 |
+
dataset:
|
2869 |
+
type: mteb/twitterurlcorpus-pairclassification
|
2870 |
+
name: MTEB TwitterURLCorpus
|
2871 |
+
config: default
|
2872 |
+
split: test
|
2873 |
+
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
|
2874 |
+
metrics:
|
2875 |
+
- type: cos_sim_accuracy
|
2876 |
+
value: 87.80416812201653
|
2877 |
+
- type: cos_sim_ap
|
2878 |
+
value: 83.45540469219863
|
2879 |
+
- type: cos_sim_f1
|
2880 |
+
value: 75.58836427422892
|
2881 |
+
- type: cos_sim_precision
|
2882 |
+
value: 71.93934335002783
|
2883 |
+
- type: cos_sim_recall
|
2884 |
+
value: 79.62734832152756
|
2885 |
+
- type: dot_accuracy
|
2886 |
+
value: 83.04226336011176
|
2887 |
+
- type: dot_ap
|
2888 |
+
value: 70.63007268018524
|
2889 |
+
- type: dot_f1
|
2890 |
+
value: 65.35980325765405
|
2891 |
+
- type: dot_precision
|
2892 |
+
value: 60.84677151768532
|
2893 |
+
- type: dot_recall
|
2894 |
+
value: 70.59593470896212
|
2895 |
+
- type: euclidean_accuracy
|
2896 |
+
value: 87.60430007373773
|
2897 |
+
- type: euclidean_ap
|
2898 |
+
value: 83.10068502536592
|
2899 |
+
- type: euclidean_f1
|
2900 |
+
value: 75.02510506936439
|
2901 |
+
- type: euclidean_precision
|
2902 |
+
value: 72.56637168141593
|
2903 |
+
- type: euclidean_recall
|
2904 |
+
value: 77.65629812134279
|
2905 |
+
- type: manhattan_accuracy
|
2906 |
+
value: 87.60041914076145
|
2907 |
+
- type: manhattan_ap
|
2908 |
+
value: 83.05480769911229
|
2909 |
+
- type: manhattan_f1
|
2910 |
+
value: 74.98522895125554
|
2911 |
+
- type: manhattan_precision
|
2912 |
+
value: 72.04797047970479
|
2913 |
+
- type: manhattan_recall
|
2914 |
+
value: 78.17215891592238
|
2915 |
+
- type: max_accuracy
|
2916 |
+
value: 87.80416812201653
|
2917 |
+
- type: max_ap
|
2918 |
+
value: 83.45540469219863
|
2919 |
+
- type: max_f1
|
2920 |
+
value: 75.58836427422892
|
2921 |
+
---
|
2922 |
+
# shibing624/text2vec-base-multilingual
|
2923 |
+
This is a CoSENT(Cosine Sentence) model: shibing624/text2vec-base-multilingual.
|
2924 |
+
|
2925 |
+
It maps sentences to a 384 dimensional dense vector space and can be used for tasks
|
2926 |
+
like sentence embeddings, text matching or semantic search.
|
2927 |
+
|
2928 |
+
|
2929 |
+
|
2930 |
+
- training dataset: https://huggingface.co/datasets/shibing624/nli-zh-all/tree/main/text2vec-base-multilingual-dataset
|
2931 |
+
- base model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
|
2932 |
+
- max_seq_length: 256
|
2933 |
+
- best epoch: 4
|
2934 |
+
- sentence embedding dim: 384
|
2935 |
+
|
2936 |
+
## Evaluation
|
2937 |
+
For an automated evaluation of this model, see the *Evaluation Benchmark*: [text2vec](https://github.com/shibing624/text2vec)
|
2938 |
+
## Languages
|
2939 |
+
Available languages are: de, en, es, fr, it, nl, pl, pt, ru, zh
|
2940 |
+
|
2941 |
+
### Release Models
|
2942 |
+
|
2943 |
+
| Arch | BaseModel | Model | ATEC | BQ | LCQMC | PAWSX | STS-B | SOHU-dd | SOHU-dc | Avg | QPS |
|
2944 |
+
|:-----------|:-------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------|:-----:|:-----:|:-----:|:-----:|:-----:|:-------:|:-------:|:---------:|:-----:|
|
2945 |
+
| Word2Vec | word2vec | [w2v-light-tencent-chinese](https://ai.tencent.com/ailab/nlp/en/download.html) | 20.00 | 31.49 | 59.46 | 2.57 | 55.78 | 55.04 | 20.70 | 35.03 | 23769 |
|
2946 |
+
| SBERT | xlm-roberta-base | [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) | 18.42 | 38.52 | 63.96 | 10.14 | 78.90 | 63.01 | 52.28 | 46.46 | 3138 |
|
2947 |
+
| Instructor | hfl/chinese-roberta-wwm-ext | [moka-ai/m3e-base](https://huggingface.co/moka-ai/m3e-base) | 41.27 | 63.81 | 74.87 | 12.20 | 76.96 | 75.83 | 60.55 | 57.93 | 2980 |
|
2948 |
+
| CoSENT | hfl/chinese-macbert-base | [shibing624/text2vec-base-chinese](https://huggingface.co/shibing624/text2vec-base-chinese) | 31.93 | 42.67 | 70.16 | 17.21 | 79.30 | 70.27 | 50.42 | 51.61 | 3008 |
|
2949 |
+
| CoSENT | hfl/chinese-lert-large | [GanymedeNil/text2vec-large-chinese](https://huggingface.co/GanymedeNil/text2vec-large-chinese) | 32.61 | 44.59 | 69.30 | 14.51 | 79.44 | 73.01 | 59.04 | 53.12 | 2092 |
|
2950 |
+
| CoSENT | nghuyong/ernie-3.0-base-zh | [shibing624/text2vec-base-chinese-sentence](https://huggingface.co/shibing624/text2vec-base-chinese-sentence) | 43.37 | 61.43 | 73.48 | 38.90 | 78.25 | 70.60 | 53.08 | 59.87 | 3089 |
|
2951 |
+
| CoSENT | nghuyong/ernie-3.0-base-zh | [shibing624/text2vec-base-chinese-paraphrase](https://huggingface.co/shibing624/text2vec-base-chinese-paraphrase) | 44.89 | 63.58 | 74.24 | 40.90 | 78.93 | 76.70 | 63.30 | **63.08** | 3066 |
|
2952 |
+
| CoSENT | sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 | [shibing624/text2vec-base-multilingual](https://huggingface.co/shibing624/text2vec-base-multilingual) | 32.39 | 50.33 | 65.64 | 32.56 | 74.45 | 68.88 | 51.17 | 53.67 | 4004 |
|
2953 |
+
|
2954 |
+
|
2955 |
+
Illustrate:
|
2956 |
+
- Result evaluation index: spearman coefficient
|
2957 |
+
- The `shibing624/text2vec-base-chinese` model is trained using the CoSENT method. It is trained on Chinese STS-B data based on `hfl/chinese-macbert-base` and has achieved good results in the Chinese STS-B test set evaluation. , run [examples/training_sup_text_matching_model.py](https://github.com/shibing624/text2vec/blob/master/examples/training_sup_text_matching_model.py) code to train the model, the model file has been uploaded to HF model hub, Chinese universal semantic matching task Recommended Use
|
2958 |
+
- The `shibing624/text2vec-base-chinese-sentence` model is trained using the CoSENT method and is based on the manually selected Chinese STS data set of `nghuyong/ernie-3.0-base-zh` [shibing624/nli-zh-all/ text2vec-base-chinese-sentence-dataset](https://huggingface.co/datasets/shibing624/nli-zh-all/tree/main/text2vec-base-chinese-sentence-dataset), and is used in various Chinese NLI test set evaluation has achieved good results. Run the [examples/training_sup_text_matching_model_jsonl_data.py](https://github.com/shibing624/text2vec/blob/master/examples/training_sup_text_matching_model_jsonl_data.py) code to train the model, and the model file has been uploaded to HF model hub, recommended for Chinese s2s (sentence vs sentence) semantic matching tasks
|
2959 |
+
- The `shibing624/text2vec-base-chinese-paraphrase` model is trained using the CoSENT method and is based on the manually selected Chinese STS data set of `nghuyong/ernie-3.0-base-zh` [shibing624/nli-zh-all/ text2vec-base-chinese-paraphrase-dataset](https://huggingface.co/datasets/shibing624/nli-zh-all/tree/main/text2vec-base-chinese-paraphrase-dataset), the data set is relative to [shibing624 /nli-zh-all/text2vec-base-chinese-sentence-dataset](https://huggingface.co/datasets/shibing624/nli-zh-all/tree/main/text2vec-base-chinese-sentence-dataset) s2p (sentence to paraphrase) data was added to strengthen its long text representation capabilities, and the evaluation on each Chinese NLI test set reached SOTA, running [examples/training_sup_text_matching_model_jsonl_data.py](https://github.com/shibing624/text2vec /blob/master/examples/training_sup_text_matching_model_jsonl_data.py) code can train the model. The model file has been uploaded to HF model hub. It is recommended for Chinese s2p (sentence vs paragraph) semantic matching tasks.
|
2960 |
+
- The `shibing624/text2vec-base-multilingual` model is trained using the CoSENT method and is based on the manually selected multilingual STS data set of `sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2` [shibing624/nli-zh -all/text2vec-base-multilingual-dataset](https://huggingface.co/datasets/shibing624/nli-zh-all/tree/main/text2vec-base-multilingual-dataset) trained and tested in Chinese and English The set evaluation effect is improved compared to the original model. Run the [examples/training_sup_text_matching_model_jsonl_data.py](https://github.com/shibing624/text2vec/blob/master/examples/training_sup_text_matching_model_jsonl_data.py) code to train the model, and the model file has been uploaded. HF model hub, recommended for multi-language semantic matching tasks
|
2961 |
+
- `w2v-light-tencent-chinese` is the Word2Vec model of Tencent word vector, which is loaded and used by CPU. It is suitable for Chinese text matching tasks and cold start situations where data is missing.
|
2962 |
+
- The GPU test environment of QPS is Tesla V100 with 32GB memory.
|
2963 |
+
|
2964 |
+
Model training experiment report: [Experiment report](https://github.com/shibing624/text2vec/blob/master/docs/model_report.md)
|
2965 |
+
|
2966 |
+
## Usage (text2vec)
|
2967 |
+
Using this model becomes easy when you have [text2vec](https://github.com/shibing624/text2vec) installed:
|
2968 |
+
|
2969 |
+
```
|
2970 |
+
pip install -U text2vec
|
2971 |
+
```
|
2972 |
+
|
2973 |
+
Then you can use the model like this:
|
2974 |
+
|
2975 |
+
```python
|
2976 |
+
from text2vec import SentenceModel
|
2977 |
+
sentences = ['如何更换花呗绑定银行卡', 'How to replace the Huabei bundled bank card']
|
2978 |
+
|
2979 |
+
model = SentenceModel('shibing624/text2vec-base-multilingual')
|
2980 |
+
embeddings = model.encode(sentences)
|
2981 |
+
print(embeddings)
|
2982 |
+
```
|
2983 |
+
|
2984 |
+
## Usage (HuggingFace Transformers)
|
2985 |
+
Without [text2vec](https://github.com/shibing624/text2vec), you can use the model like this:
|
2986 |
+
|
2987 |
+
First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
2988 |
+
|
2989 |
+
Install transformers:
|
2990 |
+
```
|
2991 |
+
pip install transformers
|
2992 |
+
```
|
2993 |
+
|
2994 |
+
Then load model and predict:
|
2995 |
+
```python
|
2996 |
+
from transformers import AutoTokenizer, AutoModel
|
2997 |
+
import torch
|
2998 |
+
|
2999 |
+
# Mean Pooling - Take attention mask into account for correct averaging
|
3000 |
+
def mean_pooling(model_output, attention_mask):
|
3001 |
+
token_embeddings = model_output[0] # First element of model_output contains all token embeddings
|
3002 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
3003 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
3004 |
+
|
3005 |
+
# Load model from HuggingFace Hub
|
3006 |
+
tokenizer = AutoTokenizer.from_pretrained('shibing624/text2vec-base-multilingual')
|
3007 |
+
model = AutoModel.from_pretrained('shibing624/text2vec-base-multilingual')
|
3008 |
+
sentences = ['如何更换花呗绑定银行卡', 'How to replace the Huabei bundled bank card']
|
3009 |
+
# Tokenize sentences
|
3010 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
3011 |
+
|
3012 |
+
# Compute token embeddings
|
3013 |
+
with torch.no_grad():
|
3014 |
+
model_output = model(**encoded_input)
|
3015 |
+
# Perform pooling. In this case, mean pooling.
|
3016 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
3017 |
+
print("Sentence embeddings:")
|
3018 |
+
print(sentence_embeddings)
|
3019 |
+
```
|
3020 |
+
|
3021 |
+
## Usage (sentence-transformers)
|
3022 |
+
[sentence-transformers](https://github.com/UKPLab/sentence-transformers) is a popular library to compute dense vector representations for sentences.
|
3023 |
+
|
3024 |
+
Install sentence-transformers:
|
3025 |
+
```
|
3026 |
+
pip install -U sentence-transformers
|
3027 |
+
```
|
3028 |
+
|
3029 |
+
Then load model and predict:
|
3030 |
+
|
3031 |
+
```python
|
3032 |
+
from sentence_transformers import SentenceTransformer
|
3033 |
+
|
3034 |
+
m = SentenceTransformer("shibing624/text2vec-base-multilingual")
|
3035 |
+
sentences = ['如何更换花呗绑定银行卡', 'How to replace the Huabei bundled bank card']
|
3036 |
+
|
3037 |
+
sentence_embeddings = m.encode(sentences)
|
3038 |
+
print("Sentence embeddings:")
|
3039 |
+
print(sentence_embeddings)
|
3040 |
+
```
|
3041 |
+
|
3042 |
+
|
3043 |
+
## Full Model Architecture
|
3044 |
+
```
|
3045 |
+
CoSENT(
|
3046 |
+
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
|
3047 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_mean_tokens': True})
|
3048 |
+
)
|
3049 |
+
```
|
3050 |
+
|
3051 |
+
|
3052 |
+
## Intended uses
|
3053 |
+
|
3054 |
+
Our model is intented to be used as a sentence and short paragraph encoder. Given an input text, it ouptuts a vector which captures
|
3055 |
+
the semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks.
|
3056 |
+
|
3057 |
+
By default, input text longer than 256 word pieces is truncated.
|
3058 |
+
|
3059 |
+
|
3060 |
+
## Training procedure
|
3061 |
+
|
3062 |
+
### Pre-training
|
3063 |
+
|
3064 |
+
We use the pretrained [`sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2`](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) model.
|
3065 |
+
Please refer to the model card for more detailed information about the pre-training procedure.
|
3066 |
+
|
3067 |
+
### Fine-tuning
|
3068 |
+
|
3069 |
+
We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each
|
3070 |
+
possible sentence pairs from the batch.
|
3071 |
+
We then apply the rank loss by comparing with true pairs and false pairs.
|
3072 |
+
|
3073 |
+
|
3074 |
+
## Citing & Authors
|
3075 |
+
This model was trained by [text2vec](https://github.com/shibing624/text2vec).
|
3076 |
+
|
3077 |
+
If you find this model helpful, feel free to cite:
|
3078 |
+
```bibtex
|
3079 |
+
@software{text2vec,
|
3080 |
+
author = {Ming Xu},
|
3081 |
+
title = {text2vec: A Tool for Text to Vector},
|
3082 |
+
year = {2023},
|
3083 |
+
url = {https://github.com/shibing624/text2vec},
|
3084 |
+
}
|
3085 |
+
```
|
all.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5f84f8d815484ad61b099db424bcb751cb8b5027deff809f0b55fa2a17682363
|
3 |
+
size 31730006
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 384,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 1536,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.30.1",
|
23 |
+
"type_vocab_size": 2,
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 250037
|
26 |
+
}
|
eval_results.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
eval_pearson = 0.7896593722697193
|
2 |
+
eval_spearman = 0.8097651989584397
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0ed62ef4c21beacf8f38536f4b7822bb945151ab8dcae0138aec42074790606d
|
3 |
+
size 470686253
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 256,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"cls_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"mask_token": {
|
6 |
+
"content": "<mask>",
|
7 |
+
"lstrip": true,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"pad_token": "<pad>",
|
13 |
+
"sep_token": "</s>",
|
14 |
+
"unk_token": "<unk>"
|
15 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b93bf61272f75c0a0b96b85fa262d2242e8a46008d76095386e98675f0bdd119
|
3 |
+
size 17082925
|
tokenizer_config.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"clean_up_tokenization_spaces": true,
|
4 |
+
"cls_token": "<s>",
|
5 |
+
"do_lower_case": true,
|
6 |
+
"eos_token": "</s>",
|
7 |
+
"mask_token": {
|
8 |
+
"__type": "AddedToken",
|
9 |
+
"content": "<mask>",
|
10 |
+
"lstrip": true,
|
11 |
+
"normalized": true,
|
12 |
+
"rstrip": false,
|
13 |
+
"single_word": false
|
14 |
+
},
|
15 |
+
"model_max_length": 512,
|
16 |
+
"pad_token": "<pad>",
|
17 |
+
"sep_token": "</s>",
|
18 |
+
"strip_accents": null,
|
19 |
+
"tokenize_chinese_chars": true,
|
20 |
+
"tokenizer_class": "BertTokenizer",
|
21 |
+
"unk_token": "<unk>"
|
22 |
+
}
|
unigram.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:71b44701d7efd054205115acfa6ef126c5d2f84bd3affe0c59e48163674d19a6
|
3 |
+
size 14763234
|