barisaydin commited on
Commit
42e3a62
·
1 Parent(s): afd2d81

Upload folder using huggingface_hub

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,2994 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - mteb
4
+ - sentence-transfomres
5
+ - transformers
6
+ model-index:
7
+ - name: bge-large-en
8
+ results:
9
+ - task:
10
+ type: Classification
11
+ dataset:
12
+ type: mteb/amazon_counterfactual
13
+ name: MTEB AmazonCounterfactualClassification (en)
14
+ config: en
15
+ split: test
16
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
17
+ metrics:
18
+ - type: accuracy
19
+ value: 76.94029850746269
20
+ - type: ap
21
+ value: 40.00228964744091
22
+ - type: f1
23
+ value: 70.86088267934595
24
+ - task:
25
+ type: Classification
26
+ dataset:
27
+ type: mteb/amazon_polarity
28
+ name: MTEB AmazonPolarityClassification
29
+ config: default
30
+ split: test
31
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
32
+ metrics:
33
+ - type: accuracy
34
+ value: 91.93745
35
+ - type: ap
36
+ value: 88.24758534667426
37
+ - type: f1
38
+ value: 91.91033034217591
39
+ - task:
40
+ type: Classification
41
+ dataset:
42
+ type: mteb/amazon_reviews_multi
43
+ name: MTEB AmazonReviewsClassification (en)
44
+ config: en
45
+ split: test
46
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
47
+ metrics:
48
+ - type: accuracy
49
+ value: 46.158
50
+ - type: f1
51
+ value: 45.78935185074774
52
+ - task:
53
+ type: Retrieval
54
+ dataset:
55
+ type: arguana
56
+ name: MTEB ArguAna
57
+ config: default
58
+ split: test
59
+ revision: None
60
+ metrics:
61
+ - type: map_at_1
62
+ value: 39.972
63
+ - type: map_at_10
64
+ value: 54.874
65
+ - type: map_at_100
66
+ value: 55.53399999999999
67
+ - type: map_at_1000
68
+ value: 55.539
69
+ - type: map_at_3
70
+ value: 51.031000000000006
71
+ - type: map_at_5
72
+ value: 53.342999999999996
73
+ - type: mrr_at_1
74
+ value: 40.541
75
+ - type: mrr_at_10
76
+ value: 55.096000000000004
77
+ - type: mrr_at_100
78
+ value: 55.75599999999999
79
+ - type: mrr_at_1000
80
+ value: 55.761
81
+ - type: mrr_at_3
82
+ value: 51.221000000000004
83
+ - type: mrr_at_5
84
+ value: 53.568000000000005
85
+ - type: ndcg_at_1
86
+ value: 39.972
87
+ - type: ndcg_at_10
88
+ value: 62.456999999999994
89
+ - type: ndcg_at_100
90
+ value: 65.262
91
+ - type: ndcg_at_1000
92
+ value: 65.389
93
+ - type: ndcg_at_3
94
+ value: 54.673
95
+ - type: ndcg_at_5
96
+ value: 58.80499999999999
97
+ - type: precision_at_1
98
+ value: 39.972
99
+ - type: precision_at_10
100
+ value: 8.634
101
+ - type: precision_at_100
102
+ value: 0.9860000000000001
103
+ - type: precision_at_1000
104
+ value: 0.1
105
+ - type: precision_at_3
106
+ value: 21.740000000000002
107
+ - type: precision_at_5
108
+ value: 15.036
109
+ - type: recall_at_1
110
+ value: 39.972
111
+ - type: recall_at_10
112
+ value: 86.344
113
+ - type: recall_at_100
114
+ value: 98.578
115
+ - type: recall_at_1000
116
+ value: 99.57300000000001
117
+ - type: recall_at_3
118
+ value: 65.22
119
+ - type: recall_at_5
120
+ value: 75.178
121
+ - task:
122
+ type: Clustering
123
+ dataset:
124
+ type: mteb/arxiv-clustering-p2p
125
+ name: MTEB ArxivClusteringP2P
126
+ config: default
127
+ split: test
128
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
129
+ metrics:
130
+ - type: v_measure
131
+ value: 48.94652870403906
132
+ - task:
133
+ type: Clustering
134
+ dataset:
135
+ type: mteb/arxiv-clustering-s2s
136
+ name: MTEB ArxivClusteringS2S
137
+ config: default
138
+ split: test
139
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
140
+ metrics:
141
+ - type: v_measure
142
+ value: 43.17257160340209
143
+ - task:
144
+ type: Reranking
145
+ dataset:
146
+ type: mteb/askubuntudupquestions-reranking
147
+ name: MTEB AskUbuntuDupQuestions
148
+ config: default
149
+ split: test
150
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
151
+ metrics:
152
+ - type: map
153
+ value: 63.97867370559182
154
+ - type: mrr
155
+ value: 77.00820032537484
156
+ - task:
157
+ type: STS
158
+ dataset:
159
+ type: mteb/biosses-sts
160
+ name: MTEB BIOSSES
161
+ config: default
162
+ split: test
163
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
164
+ metrics:
165
+ - type: cos_sim_pearson
166
+ value: 80.00986015960616
167
+ - type: cos_sim_spearman
168
+ value: 80.36387933827882
169
+ - type: euclidean_pearson
170
+ value: 80.32305287257296
171
+ - type: euclidean_spearman
172
+ value: 82.0524720308763
173
+ - type: manhattan_pearson
174
+ value: 80.19847473906454
175
+ - type: manhattan_spearman
176
+ value: 81.87957652506985
177
+ - task:
178
+ type: Classification
179
+ dataset:
180
+ type: mteb/banking77
181
+ name: MTEB Banking77Classification
182
+ config: default
183
+ split: test
184
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
185
+ metrics:
186
+ - type: accuracy
187
+ value: 88.00000000000001
188
+ - type: f1
189
+ value: 87.99039027511853
190
+ - task:
191
+ type: Clustering
192
+ dataset:
193
+ type: mteb/biorxiv-clustering-p2p
194
+ name: MTEB BiorxivClusteringP2P
195
+ config: default
196
+ split: test
197
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
198
+ metrics:
199
+ - type: v_measure
200
+ value: 41.36932844640705
201
+ - task:
202
+ type: Clustering
203
+ dataset:
204
+ type: mteb/biorxiv-clustering-s2s
205
+ name: MTEB BiorxivClusteringS2S
206
+ config: default
207
+ split: test
208
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
209
+ metrics:
210
+ - type: v_measure
211
+ value: 38.34983239611985
212
+ - task:
213
+ type: Retrieval
214
+ dataset:
215
+ type: BeIR/cqadupstack
216
+ name: MTEB CQADupstackAndroidRetrieval
217
+ config: default
218
+ split: test
219
+ revision: None
220
+ metrics:
221
+ - type: map_at_1
222
+ value: 32.257999999999996
223
+ - type: map_at_10
224
+ value: 42.937
225
+ - type: map_at_100
226
+ value: 44.406
227
+ - type: map_at_1000
228
+ value: 44.536
229
+ - type: map_at_3
230
+ value: 39.22
231
+ - type: map_at_5
232
+ value: 41.458
233
+ - type: mrr_at_1
234
+ value: 38.769999999999996
235
+ - type: mrr_at_10
236
+ value: 48.701
237
+ - type: mrr_at_100
238
+ value: 49.431000000000004
239
+ - type: mrr_at_1000
240
+ value: 49.476
241
+ - type: mrr_at_3
242
+ value: 45.875
243
+ - type: mrr_at_5
244
+ value: 47.67
245
+ - type: ndcg_at_1
246
+ value: 38.769999999999996
247
+ - type: ndcg_at_10
248
+ value: 49.35
249
+ - type: ndcg_at_100
250
+ value: 54.618
251
+ - type: ndcg_at_1000
252
+ value: 56.655
253
+ - type: ndcg_at_3
254
+ value: 43.826
255
+ - type: ndcg_at_5
256
+ value: 46.72
257
+ - type: precision_at_1
258
+ value: 38.769999999999996
259
+ - type: precision_at_10
260
+ value: 9.328
261
+ - type: precision_at_100
262
+ value: 1.484
263
+ - type: precision_at_1000
264
+ value: 0.196
265
+ - type: precision_at_3
266
+ value: 20.649
267
+ - type: precision_at_5
268
+ value: 15.25
269
+ - type: recall_at_1
270
+ value: 32.257999999999996
271
+ - type: recall_at_10
272
+ value: 61.849
273
+ - type: recall_at_100
274
+ value: 83.70400000000001
275
+ - type: recall_at_1000
276
+ value: 96.344
277
+ - type: recall_at_3
278
+ value: 46.037
279
+ - type: recall_at_5
280
+ value: 53.724000000000004
281
+ - task:
282
+ type: Retrieval
283
+ dataset:
284
+ type: BeIR/cqadupstack
285
+ name: MTEB CQADupstackEnglishRetrieval
286
+ config: default
287
+ split: test
288
+ revision: None
289
+ metrics:
290
+ - type: map_at_1
291
+ value: 32.979
292
+ - type: map_at_10
293
+ value: 43.376999999999995
294
+ - type: map_at_100
295
+ value: 44.667
296
+ - type: map_at_1000
297
+ value: 44.794
298
+ - type: map_at_3
299
+ value: 40.461999999999996
300
+ - type: map_at_5
301
+ value: 42.138
302
+ - type: mrr_at_1
303
+ value: 41.146
304
+ - type: mrr_at_10
305
+ value: 49.575
306
+ - type: mrr_at_100
307
+ value: 50.187000000000005
308
+ - type: mrr_at_1000
309
+ value: 50.231
310
+ - type: mrr_at_3
311
+ value: 47.601
312
+ - type: mrr_at_5
313
+ value: 48.786
314
+ - type: ndcg_at_1
315
+ value: 41.146
316
+ - type: ndcg_at_10
317
+ value: 48.957
318
+ - type: ndcg_at_100
319
+ value: 53.296
320
+ - type: ndcg_at_1000
321
+ value: 55.254000000000005
322
+ - type: ndcg_at_3
323
+ value: 45.235
324
+ - type: ndcg_at_5
325
+ value: 47.014
326
+ - type: precision_at_1
327
+ value: 41.146
328
+ - type: precision_at_10
329
+ value: 9.107999999999999
330
+ - type: precision_at_100
331
+ value: 1.481
332
+ - type: precision_at_1000
333
+ value: 0.193
334
+ - type: precision_at_3
335
+ value: 21.783
336
+ - type: precision_at_5
337
+ value: 15.274
338
+ - type: recall_at_1
339
+ value: 32.979
340
+ - type: recall_at_10
341
+ value: 58.167
342
+ - type: recall_at_100
343
+ value: 76.374
344
+ - type: recall_at_1000
345
+ value: 88.836
346
+ - type: recall_at_3
347
+ value: 46.838
348
+ - type: recall_at_5
349
+ value: 52.006
350
+ - task:
351
+ type: Retrieval
352
+ dataset:
353
+ type: BeIR/cqadupstack
354
+ name: MTEB CQADupstackGamingRetrieval
355
+ config: default
356
+ split: test
357
+ revision: None
358
+ metrics:
359
+ - type: map_at_1
360
+ value: 40.326
361
+ - type: map_at_10
362
+ value: 53.468
363
+ - type: map_at_100
364
+ value: 54.454
365
+ - type: map_at_1000
366
+ value: 54.508
367
+ - type: map_at_3
368
+ value: 50.12799999999999
369
+ - type: map_at_5
370
+ value: 51.991
371
+ - type: mrr_at_1
372
+ value: 46.394999999999996
373
+ - type: mrr_at_10
374
+ value: 57.016999999999996
375
+ - type: mrr_at_100
376
+ value: 57.67099999999999
377
+ - type: mrr_at_1000
378
+ value: 57.699999999999996
379
+ - type: mrr_at_3
380
+ value: 54.65
381
+ - type: mrr_at_5
382
+ value: 56.101
383
+ - type: ndcg_at_1
384
+ value: 46.394999999999996
385
+ - type: ndcg_at_10
386
+ value: 59.507
387
+ - type: ndcg_at_100
388
+ value: 63.31099999999999
389
+ - type: ndcg_at_1000
390
+ value: 64.388
391
+ - type: ndcg_at_3
392
+ value: 54.04600000000001
393
+ - type: ndcg_at_5
394
+ value: 56.723
395
+ - type: precision_at_1
396
+ value: 46.394999999999996
397
+ - type: precision_at_10
398
+ value: 9.567
399
+ - type: precision_at_100
400
+ value: 1.234
401
+ - type: precision_at_1000
402
+ value: 0.13699999999999998
403
+ - type: precision_at_3
404
+ value: 24.117
405
+ - type: precision_at_5
406
+ value: 16.426
407
+ - type: recall_at_1
408
+ value: 40.326
409
+ - type: recall_at_10
410
+ value: 73.763
411
+ - type: recall_at_100
412
+ value: 89.927
413
+ - type: recall_at_1000
414
+ value: 97.509
415
+ - type: recall_at_3
416
+ value: 59.34
417
+ - type: recall_at_5
418
+ value: 65.915
419
+ - task:
420
+ type: Retrieval
421
+ dataset:
422
+ type: BeIR/cqadupstack
423
+ name: MTEB CQADupstackGisRetrieval
424
+ config: default
425
+ split: test
426
+ revision: None
427
+ metrics:
428
+ - type: map_at_1
429
+ value: 26.661
430
+ - type: map_at_10
431
+ value: 35.522
432
+ - type: map_at_100
433
+ value: 36.619
434
+ - type: map_at_1000
435
+ value: 36.693999999999996
436
+ - type: map_at_3
437
+ value: 33.154
438
+ - type: map_at_5
439
+ value: 34.353
440
+ - type: mrr_at_1
441
+ value: 28.362
442
+ - type: mrr_at_10
443
+ value: 37.403999999999996
444
+ - type: mrr_at_100
445
+ value: 38.374
446
+ - type: mrr_at_1000
447
+ value: 38.428000000000004
448
+ - type: mrr_at_3
449
+ value: 35.235
450
+ - type: mrr_at_5
451
+ value: 36.269
452
+ - type: ndcg_at_1
453
+ value: 28.362
454
+ - type: ndcg_at_10
455
+ value: 40.431
456
+ - type: ndcg_at_100
457
+ value: 45.745999999999995
458
+ - type: ndcg_at_1000
459
+ value: 47.493
460
+ - type: ndcg_at_3
461
+ value: 35.733
462
+ - type: ndcg_at_5
463
+ value: 37.722
464
+ - type: precision_at_1
465
+ value: 28.362
466
+ - type: precision_at_10
467
+ value: 6.101999999999999
468
+ - type: precision_at_100
469
+ value: 0.922
470
+ - type: precision_at_1000
471
+ value: 0.11100000000000002
472
+ - type: precision_at_3
473
+ value: 15.140999999999998
474
+ - type: precision_at_5
475
+ value: 10.305
476
+ - type: recall_at_1
477
+ value: 26.661
478
+ - type: recall_at_10
479
+ value: 53.675
480
+ - type: recall_at_100
481
+ value: 77.891
482
+ - type: recall_at_1000
483
+ value: 90.72
484
+ - type: recall_at_3
485
+ value: 40.751
486
+ - type: recall_at_5
487
+ value: 45.517
488
+ - task:
489
+ type: Retrieval
490
+ dataset:
491
+ type: BeIR/cqadupstack
492
+ name: MTEB CQADupstackMathematicaRetrieval
493
+ config: default
494
+ split: test
495
+ revision: None
496
+ metrics:
497
+ - type: map_at_1
498
+ value: 18.886
499
+ - type: map_at_10
500
+ value: 27.288
501
+ - type: map_at_100
502
+ value: 28.327999999999996
503
+ - type: map_at_1000
504
+ value: 28.438999999999997
505
+ - type: map_at_3
506
+ value: 24.453
507
+ - type: map_at_5
508
+ value: 25.959
509
+ - type: mrr_at_1
510
+ value: 23.134
511
+ - type: mrr_at_10
512
+ value: 32.004
513
+ - type: mrr_at_100
514
+ value: 32.789
515
+ - type: mrr_at_1000
516
+ value: 32.857
517
+ - type: mrr_at_3
518
+ value: 29.084
519
+ - type: mrr_at_5
520
+ value: 30.614
521
+ - type: ndcg_at_1
522
+ value: 23.134
523
+ - type: ndcg_at_10
524
+ value: 32.852
525
+ - type: ndcg_at_100
526
+ value: 37.972
527
+ - type: ndcg_at_1000
528
+ value: 40.656
529
+ - type: ndcg_at_3
530
+ value: 27.435
531
+ - type: ndcg_at_5
532
+ value: 29.823
533
+ - type: precision_at_1
534
+ value: 23.134
535
+ - type: precision_at_10
536
+ value: 6.032
537
+ - type: precision_at_100
538
+ value: 0.9950000000000001
539
+ - type: precision_at_1000
540
+ value: 0.136
541
+ - type: precision_at_3
542
+ value: 13.017999999999999
543
+ - type: precision_at_5
544
+ value: 9.501999999999999
545
+ - type: recall_at_1
546
+ value: 18.886
547
+ - type: recall_at_10
548
+ value: 45.34
549
+ - type: recall_at_100
550
+ value: 67.947
551
+ - type: recall_at_1000
552
+ value: 86.924
553
+ - type: recall_at_3
554
+ value: 30.535
555
+ - type: recall_at_5
556
+ value: 36.451
557
+ - task:
558
+ type: Retrieval
559
+ dataset:
560
+ type: BeIR/cqadupstack
561
+ name: MTEB CQADupstackPhysicsRetrieval
562
+ config: default
563
+ split: test
564
+ revision: None
565
+ metrics:
566
+ - type: map_at_1
567
+ value: 28.994999999999997
568
+ - type: map_at_10
569
+ value: 40.04
570
+ - type: map_at_100
571
+ value: 41.435
572
+ - type: map_at_1000
573
+ value: 41.537
574
+ - type: map_at_3
575
+ value: 37.091
576
+ - type: map_at_5
577
+ value: 38.802
578
+ - type: mrr_at_1
579
+ value: 35.034
580
+ - type: mrr_at_10
581
+ value: 45.411
582
+ - type: mrr_at_100
583
+ value: 46.226
584
+ - type: mrr_at_1000
585
+ value: 46.27
586
+ - type: mrr_at_3
587
+ value: 43.086
588
+ - type: mrr_at_5
589
+ value: 44.452999999999996
590
+ - type: ndcg_at_1
591
+ value: 35.034
592
+ - type: ndcg_at_10
593
+ value: 46.076
594
+ - type: ndcg_at_100
595
+ value: 51.483000000000004
596
+ - type: ndcg_at_1000
597
+ value: 53.433
598
+ - type: ndcg_at_3
599
+ value: 41.304
600
+ - type: ndcg_at_5
601
+ value: 43.641999999999996
602
+ - type: precision_at_1
603
+ value: 35.034
604
+ - type: precision_at_10
605
+ value: 8.258000000000001
606
+ - type: precision_at_100
607
+ value: 1.268
608
+ - type: precision_at_1000
609
+ value: 0.161
610
+ - type: precision_at_3
611
+ value: 19.57
612
+ - type: precision_at_5
613
+ value: 13.782
614
+ - type: recall_at_1
615
+ value: 28.994999999999997
616
+ - type: recall_at_10
617
+ value: 58.538000000000004
618
+ - type: recall_at_100
619
+ value: 80.72399999999999
620
+ - type: recall_at_1000
621
+ value: 93.462
622
+ - type: recall_at_3
623
+ value: 45.199
624
+ - type: recall_at_5
625
+ value: 51.237
626
+ - task:
627
+ type: Retrieval
628
+ dataset:
629
+ type: BeIR/cqadupstack
630
+ name: MTEB CQADupstackProgrammersRetrieval
631
+ config: default
632
+ split: test
633
+ revision: None
634
+ metrics:
635
+ - type: map_at_1
636
+ value: 24.795
637
+ - type: map_at_10
638
+ value: 34.935
639
+ - type: map_at_100
640
+ value: 36.306
641
+ - type: map_at_1000
642
+ value: 36.417
643
+ - type: map_at_3
644
+ value: 31.831
645
+ - type: map_at_5
646
+ value: 33.626
647
+ - type: mrr_at_1
648
+ value: 30.479
649
+ - type: mrr_at_10
650
+ value: 40.225
651
+ - type: mrr_at_100
652
+ value: 41.055
653
+ - type: mrr_at_1000
654
+ value: 41.114
655
+ - type: mrr_at_3
656
+ value: 37.538
657
+ - type: mrr_at_5
658
+ value: 39.073
659
+ - type: ndcg_at_1
660
+ value: 30.479
661
+ - type: ndcg_at_10
662
+ value: 40.949999999999996
663
+ - type: ndcg_at_100
664
+ value: 46.525
665
+ - type: ndcg_at_1000
666
+ value: 48.892
667
+ - type: ndcg_at_3
668
+ value: 35.79
669
+ - type: ndcg_at_5
670
+ value: 38.237
671
+ - type: precision_at_1
672
+ value: 30.479
673
+ - type: precision_at_10
674
+ value: 7.6259999999999994
675
+ - type: precision_at_100
676
+ value: 1.203
677
+ - type: precision_at_1000
678
+ value: 0.157
679
+ - type: precision_at_3
680
+ value: 17.199
681
+ - type: precision_at_5
682
+ value: 12.466000000000001
683
+ - type: recall_at_1
684
+ value: 24.795
685
+ - type: recall_at_10
686
+ value: 53.421
687
+ - type: recall_at_100
688
+ value: 77.189
689
+ - type: recall_at_1000
690
+ value: 93.407
691
+ - type: recall_at_3
692
+ value: 39.051
693
+ - type: recall_at_5
694
+ value: 45.462
695
+ - task:
696
+ type: Retrieval
697
+ dataset:
698
+ type: BeIR/cqadupstack
699
+ name: MTEB CQADupstackRetrieval
700
+ config: default
701
+ split: test
702
+ revision: None
703
+ metrics:
704
+ - type: map_at_1
705
+ value: 26.853499999999997
706
+ - type: map_at_10
707
+ value: 36.20433333333333
708
+ - type: map_at_100
709
+ value: 37.40391666666667
710
+ - type: map_at_1000
711
+ value: 37.515
712
+ - type: map_at_3
713
+ value: 33.39975
714
+ - type: map_at_5
715
+ value: 34.9665
716
+ - type: mrr_at_1
717
+ value: 31.62666666666667
718
+ - type: mrr_at_10
719
+ value: 40.436749999999996
720
+ - type: mrr_at_100
721
+ value: 41.260333333333335
722
+ - type: mrr_at_1000
723
+ value: 41.31525
724
+ - type: mrr_at_3
725
+ value: 38.06733333333332
726
+ - type: mrr_at_5
727
+ value: 39.41541666666667
728
+ - type: ndcg_at_1
729
+ value: 31.62666666666667
730
+ - type: ndcg_at_10
731
+ value: 41.63341666666667
732
+ - type: ndcg_at_100
733
+ value: 46.704166666666666
734
+ - type: ndcg_at_1000
735
+ value: 48.88483333333335
736
+ - type: ndcg_at_3
737
+ value: 36.896
738
+ - type: ndcg_at_5
739
+ value: 39.11891666666667
740
+ - type: precision_at_1
741
+ value: 31.62666666666667
742
+ - type: precision_at_10
743
+ value: 7.241083333333333
744
+ - type: precision_at_100
745
+ value: 1.1488333333333334
746
+ - type: precision_at_1000
747
+ value: 0.15250000000000002
748
+ - type: precision_at_3
749
+ value: 16.908333333333335
750
+ - type: precision_at_5
751
+ value: 11.942833333333333
752
+ - type: recall_at_1
753
+ value: 26.853499999999997
754
+ - type: recall_at_10
755
+ value: 53.461333333333336
756
+ - type: recall_at_100
757
+ value: 75.63633333333333
758
+ - type: recall_at_1000
759
+ value: 90.67016666666666
760
+ - type: recall_at_3
761
+ value: 40.24241666666667
762
+ - type: recall_at_5
763
+ value: 45.98608333333333
764
+ - task:
765
+ type: Retrieval
766
+ dataset:
767
+ type: BeIR/cqadupstack
768
+ name: MTEB CQADupstackStatsRetrieval
769
+ config: default
770
+ split: test
771
+ revision: None
772
+ metrics:
773
+ - type: map_at_1
774
+ value: 25.241999999999997
775
+ - type: map_at_10
776
+ value: 31.863999999999997
777
+ - type: map_at_100
778
+ value: 32.835
779
+ - type: map_at_1000
780
+ value: 32.928000000000004
781
+ - type: map_at_3
782
+ value: 29.694
783
+ - type: map_at_5
784
+ value: 30.978
785
+ - type: mrr_at_1
786
+ value: 28.374
787
+ - type: mrr_at_10
788
+ value: 34.814
789
+ - type: mrr_at_100
790
+ value: 35.596
791
+ - type: mrr_at_1000
792
+ value: 35.666
793
+ - type: mrr_at_3
794
+ value: 32.745000000000005
795
+ - type: mrr_at_5
796
+ value: 34.049
797
+ - type: ndcg_at_1
798
+ value: 28.374
799
+ - type: ndcg_at_10
800
+ value: 35.969
801
+ - type: ndcg_at_100
802
+ value: 40.708
803
+ - type: ndcg_at_1000
804
+ value: 43.08
805
+ - type: ndcg_at_3
806
+ value: 31.968999999999998
807
+ - type: ndcg_at_5
808
+ value: 34.069
809
+ - type: precision_at_1
810
+ value: 28.374
811
+ - type: precision_at_10
812
+ value: 5.583
813
+ - type: precision_at_100
814
+ value: 0.8630000000000001
815
+ - type: precision_at_1000
816
+ value: 0.11299999999999999
817
+ - type: precision_at_3
818
+ value: 13.547999999999998
819
+ - type: precision_at_5
820
+ value: 9.447999999999999
821
+ - type: recall_at_1
822
+ value: 25.241999999999997
823
+ - type: recall_at_10
824
+ value: 45.711
825
+ - type: recall_at_100
826
+ value: 67.482
827
+ - type: recall_at_1000
828
+ value: 85.13300000000001
829
+ - type: recall_at_3
830
+ value: 34.622
831
+ - type: recall_at_5
832
+ value: 40.043
833
+ - task:
834
+ type: Retrieval
835
+ dataset:
836
+ type: BeIR/cqadupstack
837
+ name: MTEB CQADupstackTexRetrieval
838
+ config: default
839
+ split: test
840
+ revision: None
841
+ metrics:
842
+ - type: map_at_1
843
+ value: 17.488999999999997
844
+ - type: map_at_10
845
+ value: 25.142999999999997
846
+ - type: map_at_100
847
+ value: 26.244
848
+ - type: map_at_1000
849
+ value: 26.363999999999997
850
+ - type: map_at_3
851
+ value: 22.654
852
+ - type: map_at_5
853
+ value: 24.017
854
+ - type: mrr_at_1
855
+ value: 21.198
856
+ - type: mrr_at_10
857
+ value: 28.903000000000002
858
+ - type: mrr_at_100
859
+ value: 29.860999999999997
860
+ - type: mrr_at_1000
861
+ value: 29.934
862
+ - type: mrr_at_3
863
+ value: 26.634999999999998
864
+ - type: mrr_at_5
865
+ value: 27.903
866
+ - type: ndcg_at_1
867
+ value: 21.198
868
+ - type: ndcg_at_10
869
+ value: 29.982999999999997
870
+ - type: ndcg_at_100
871
+ value: 35.275
872
+ - type: ndcg_at_1000
873
+ value: 38.074000000000005
874
+ - type: ndcg_at_3
875
+ value: 25.502999999999997
876
+ - type: ndcg_at_5
877
+ value: 27.557
878
+ - type: precision_at_1
879
+ value: 21.198
880
+ - type: precision_at_10
881
+ value: 5.502
882
+ - type: precision_at_100
883
+ value: 0.942
884
+ - type: precision_at_1000
885
+ value: 0.136
886
+ - type: precision_at_3
887
+ value: 12.044
888
+ - type: precision_at_5
889
+ value: 8.782
890
+ - type: recall_at_1
891
+ value: 17.488999999999997
892
+ - type: recall_at_10
893
+ value: 40.821000000000005
894
+ - type: recall_at_100
895
+ value: 64.567
896
+ - type: recall_at_1000
897
+ value: 84.452
898
+ - type: recall_at_3
899
+ value: 28.351
900
+ - type: recall_at_5
901
+ value: 33.645
902
+ - task:
903
+ type: Retrieval
904
+ dataset:
905
+ type: BeIR/cqadupstack
906
+ name: MTEB CQADupstackUnixRetrieval
907
+ config: default
908
+ split: test
909
+ revision: None
910
+ metrics:
911
+ - type: map_at_1
912
+ value: 27.066000000000003
913
+ - type: map_at_10
914
+ value: 36.134
915
+ - type: map_at_100
916
+ value: 37.285000000000004
917
+ - type: map_at_1000
918
+ value: 37.389
919
+ - type: map_at_3
920
+ value: 33.522999999999996
921
+ - type: map_at_5
922
+ value: 34.905
923
+ - type: mrr_at_1
924
+ value: 31.436999999999998
925
+ - type: mrr_at_10
926
+ value: 40.225
927
+ - type: mrr_at_100
928
+ value: 41.079
929
+ - type: mrr_at_1000
930
+ value: 41.138000000000005
931
+ - type: mrr_at_3
932
+ value: 38.074999999999996
933
+ - type: mrr_at_5
934
+ value: 39.190000000000005
935
+ - type: ndcg_at_1
936
+ value: 31.436999999999998
937
+ - type: ndcg_at_10
938
+ value: 41.494
939
+ - type: ndcg_at_100
940
+ value: 46.678999999999995
941
+ - type: ndcg_at_1000
942
+ value: 48.964
943
+ - type: ndcg_at_3
944
+ value: 36.828
945
+ - type: ndcg_at_5
946
+ value: 38.789
947
+ - type: precision_at_1
948
+ value: 31.436999999999998
949
+ - type: precision_at_10
950
+ value: 6.931
951
+ - type: precision_at_100
952
+ value: 1.072
953
+ - type: precision_at_1000
954
+ value: 0.13799999999999998
955
+ - type: precision_at_3
956
+ value: 16.729
957
+ - type: precision_at_5
958
+ value: 11.567
959
+ - type: recall_at_1
960
+ value: 27.066000000000003
961
+ - type: recall_at_10
962
+ value: 53.705000000000005
963
+ - type: recall_at_100
964
+ value: 75.968
965
+ - type: recall_at_1000
966
+ value: 91.937
967
+ - type: recall_at_3
968
+ value: 40.865
969
+ - type: recall_at_5
970
+ value: 45.739999999999995
971
+ - task:
972
+ type: Retrieval
973
+ dataset:
974
+ type: BeIR/cqadupstack
975
+ name: MTEB CQADupstackWebmastersRetrieval
976
+ config: default
977
+ split: test
978
+ revision: None
979
+ metrics:
980
+ - type: map_at_1
981
+ value: 24.979000000000003
982
+ - type: map_at_10
983
+ value: 32.799
984
+ - type: map_at_100
985
+ value: 34.508
986
+ - type: map_at_1000
987
+ value: 34.719
988
+ - type: map_at_3
989
+ value: 29.947000000000003
990
+ - type: map_at_5
991
+ value: 31.584
992
+ - type: mrr_at_1
993
+ value: 30.237000000000002
994
+ - type: mrr_at_10
995
+ value: 37.651
996
+ - type: mrr_at_100
997
+ value: 38.805
998
+ - type: mrr_at_1000
999
+ value: 38.851
1000
+ - type: mrr_at_3
1001
+ value: 35.046
1002
+ - type: mrr_at_5
1003
+ value: 36.548
1004
+ - type: ndcg_at_1
1005
+ value: 30.237000000000002
1006
+ - type: ndcg_at_10
1007
+ value: 38.356
1008
+ - type: ndcg_at_100
1009
+ value: 44.906
1010
+ - type: ndcg_at_1000
1011
+ value: 47.299
1012
+ - type: ndcg_at_3
1013
+ value: 33.717999999999996
1014
+ - type: ndcg_at_5
1015
+ value: 35.946
1016
+ - type: precision_at_1
1017
+ value: 30.237000000000002
1018
+ - type: precision_at_10
1019
+ value: 7.292
1020
+ - type: precision_at_100
1021
+ value: 1.496
1022
+ - type: precision_at_1000
1023
+ value: 0.23600000000000002
1024
+ - type: precision_at_3
1025
+ value: 15.547
1026
+ - type: precision_at_5
1027
+ value: 11.344
1028
+ - type: recall_at_1
1029
+ value: 24.979000000000003
1030
+ - type: recall_at_10
1031
+ value: 48.624
1032
+ - type: recall_at_100
1033
+ value: 77.932
1034
+ - type: recall_at_1000
1035
+ value: 92.66499999999999
1036
+ - type: recall_at_3
1037
+ value: 35.217
1038
+ - type: recall_at_5
1039
+ value: 41.394
1040
+ - task:
1041
+ type: Retrieval
1042
+ dataset:
1043
+ type: BeIR/cqadupstack
1044
+ name: MTEB CQADupstackWordpressRetrieval
1045
+ config: default
1046
+ split: test
1047
+ revision: None
1048
+ metrics:
1049
+ - type: map_at_1
1050
+ value: 22.566
1051
+ - type: map_at_10
1052
+ value: 30.945
1053
+ - type: map_at_100
1054
+ value: 31.759999999999998
1055
+ - type: map_at_1000
1056
+ value: 31.855
1057
+ - type: map_at_3
1058
+ value: 28.64
1059
+ - type: map_at_5
1060
+ value: 29.787000000000003
1061
+ - type: mrr_at_1
1062
+ value: 24.954
1063
+ - type: mrr_at_10
1064
+ value: 33.311
1065
+ - type: mrr_at_100
1066
+ value: 34.050000000000004
1067
+ - type: mrr_at_1000
1068
+ value: 34.117999999999995
1069
+ - type: mrr_at_3
1070
+ value: 31.238
1071
+ - type: mrr_at_5
1072
+ value: 32.329
1073
+ - type: ndcg_at_1
1074
+ value: 24.954
1075
+ - type: ndcg_at_10
1076
+ value: 35.676
1077
+ - type: ndcg_at_100
1078
+ value: 39.931
1079
+ - type: ndcg_at_1000
1080
+ value: 42.43
1081
+ - type: ndcg_at_3
1082
+ value: 31.365
1083
+ - type: ndcg_at_5
1084
+ value: 33.184999999999995
1085
+ - type: precision_at_1
1086
+ value: 24.954
1087
+ - type: precision_at_10
1088
+ value: 5.564
1089
+ - type: precision_at_100
1090
+ value: 0.826
1091
+ - type: precision_at_1000
1092
+ value: 0.116
1093
+ - type: precision_at_3
1094
+ value: 13.555
1095
+ - type: precision_at_5
1096
+ value: 9.168
1097
+ - type: recall_at_1
1098
+ value: 22.566
1099
+ - type: recall_at_10
1100
+ value: 47.922
1101
+ - type: recall_at_100
1102
+ value: 67.931
1103
+ - type: recall_at_1000
1104
+ value: 86.653
1105
+ - type: recall_at_3
1106
+ value: 36.103
1107
+ - type: recall_at_5
1108
+ value: 40.699000000000005
1109
+ - task:
1110
+ type: Retrieval
1111
+ dataset:
1112
+ type: climate-fever
1113
+ name: MTEB ClimateFEVER
1114
+ config: default
1115
+ split: test
1116
+ revision: None
1117
+ metrics:
1118
+ - type: map_at_1
1119
+ value: 16.950000000000003
1120
+ - type: map_at_10
1121
+ value: 28.612
1122
+ - type: map_at_100
1123
+ value: 30.476999999999997
1124
+ - type: map_at_1000
1125
+ value: 30.674
1126
+ - type: map_at_3
1127
+ value: 24.262
1128
+ - type: map_at_5
1129
+ value: 26.554
1130
+ - type: mrr_at_1
1131
+ value: 38.241
1132
+ - type: mrr_at_10
1133
+ value: 50.43
1134
+ - type: mrr_at_100
1135
+ value: 51.059
1136
+ - type: mrr_at_1000
1137
+ value: 51.090999999999994
1138
+ - type: mrr_at_3
1139
+ value: 47.514
1140
+ - type: mrr_at_5
1141
+ value: 49.246
1142
+ - type: ndcg_at_1
1143
+ value: 38.241
1144
+ - type: ndcg_at_10
1145
+ value: 38.218
1146
+ - type: ndcg_at_100
1147
+ value: 45.003
1148
+ - type: ndcg_at_1000
1149
+ value: 48.269
1150
+ - type: ndcg_at_3
1151
+ value: 32.568000000000005
1152
+ - type: ndcg_at_5
1153
+ value: 34.400999999999996
1154
+ - type: precision_at_1
1155
+ value: 38.241
1156
+ - type: precision_at_10
1157
+ value: 11.674
1158
+ - type: precision_at_100
1159
+ value: 1.913
1160
+ - type: precision_at_1000
1161
+ value: 0.252
1162
+ - type: precision_at_3
1163
+ value: 24.387
1164
+ - type: precision_at_5
1165
+ value: 18.163
1166
+ - type: recall_at_1
1167
+ value: 16.950000000000003
1168
+ - type: recall_at_10
1169
+ value: 43.769000000000005
1170
+ - type: recall_at_100
1171
+ value: 66.875
1172
+ - type: recall_at_1000
1173
+ value: 84.92699999999999
1174
+ - type: recall_at_3
1175
+ value: 29.353
1176
+ - type: recall_at_5
1177
+ value: 35.467
1178
+ - task:
1179
+ type: Retrieval
1180
+ dataset:
1181
+ type: dbpedia-entity
1182
+ name: MTEB DBPedia
1183
+ config: default
1184
+ split: test
1185
+ revision: None
1186
+ metrics:
1187
+ - type: map_at_1
1188
+ value: 9.276
1189
+ - type: map_at_10
1190
+ value: 20.848
1191
+ - type: map_at_100
1192
+ value: 29.804000000000002
1193
+ - type: map_at_1000
1194
+ value: 31.398
1195
+ - type: map_at_3
1196
+ value: 14.886
1197
+ - type: map_at_5
1198
+ value: 17.516000000000002
1199
+ - type: mrr_at_1
1200
+ value: 71
1201
+ - type: mrr_at_10
1202
+ value: 78.724
1203
+ - type: mrr_at_100
1204
+ value: 78.976
1205
+ - type: mrr_at_1000
1206
+ value: 78.986
1207
+ - type: mrr_at_3
1208
+ value: 77.333
1209
+ - type: mrr_at_5
1210
+ value: 78.021
1211
+ - type: ndcg_at_1
1212
+ value: 57.875
1213
+ - type: ndcg_at_10
1214
+ value: 43.855
1215
+ - type: ndcg_at_100
1216
+ value: 48.99
1217
+ - type: ndcg_at_1000
1218
+ value: 56.141
1219
+ - type: ndcg_at_3
1220
+ value: 48.914
1221
+ - type: ndcg_at_5
1222
+ value: 45.961
1223
+ - type: precision_at_1
1224
+ value: 71
1225
+ - type: precision_at_10
1226
+ value: 34.575
1227
+ - type: precision_at_100
1228
+ value: 11.182
1229
+ - type: precision_at_1000
1230
+ value: 2.044
1231
+ - type: precision_at_3
1232
+ value: 52.5
1233
+ - type: precision_at_5
1234
+ value: 44.2
1235
+ - type: recall_at_1
1236
+ value: 9.276
1237
+ - type: recall_at_10
1238
+ value: 26.501
1239
+ - type: recall_at_100
1240
+ value: 55.72899999999999
1241
+ - type: recall_at_1000
1242
+ value: 78.532
1243
+ - type: recall_at_3
1244
+ value: 16.365
1245
+ - type: recall_at_5
1246
+ value: 20.154
1247
+ - task:
1248
+ type: Classification
1249
+ dataset:
1250
+ type: mteb/emotion
1251
+ name: MTEB EmotionClassification
1252
+ config: default
1253
+ split: test
1254
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1255
+ metrics:
1256
+ - type: accuracy
1257
+ value: 52.71
1258
+ - type: f1
1259
+ value: 47.74801556489574
1260
+ - task:
1261
+ type: Retrieval
1262
+ dataset:
1263
+ type: fever
1264
+ name: MTEB FEVER
1265
+ config: default
1266
+ split: test
1267
+ revision: None
1268
+ metrics:
1269
+ - type: map_at_1
1270
+ value: 73.405
1271
+ - type: map_at_10
1272
+ value: 82.822
1273
+ - type: map_at_100
1274
+ value: 83.042
1275
+ - type: map_at_1000
1276
+ value: 83.055
1277
+ - type: map_at_3
1278
+ value: 81.65299999999999
1279
+ - type: map_at_5
1280
+ value: 82.431
1281
+ - type: mrr_at_1
1282
+ value: 79.178
1283
+ - type: mrr_at_10
1284
+ value: 87.02
1285
+ - type: mrr_at_100
1286
+ value: 87.095
1287
+ - type: mrr_at_1000
1288
+ value: 87.09700000000001
1289
+ - type: mrr_at_3
1290
+ value: 86.309
1291
+ - type: mrr_at_5
1292
+ value: 86.824
1293
+ - type: ndcg_at_1
1294
+ value: 79.178
1295
+ - type: ndcg_at_10
1296
+ value: 86.72
1297
+ - type: ndcg_at_100
1298
+ value: 87.457
1299
+ - type: ndcg_at_1000
1300
+ value: 87.691
1301
+ - type: ndcg_at_3
1302
+ value: 84.974
1303
+ - type: ndcg_at_5
1304
+ value: 86.032
1305
+ - type: precision_at_1
1306
+ value: 79.178
1307
+ - type: precision_at_10
1308
+ value: 10.548
1309
+ - type: precision_at_100
1310
+ value: 1.113
1311
+ - type: precision_at_1000
1312
+ value: 0.11499999999999999
1313
+ - type: precision_at_3
1314
+ value: 32.848
1315
+ - type: precision_at_5
1316
+ value: 20.45
1317
+ - type: recall_at_1
1318
+ value: 73.405
1319
+ - type: recall_at_10
1320
+ value: 94.39699999999999
1321
+ - type: recall_at_100
1322
+ value: 97.219
1323
+ - type: recall_at_1000
1324
+ value: 98.675
1325
+ - type: recall_at_3
1326
+ value: 89.679
1327
+ - type: recall_at_5
1328
+ value: 92.392
1329
+ - task:
1330
+ type: Retrieval
1331
+ dataset:
1332
+ type: fiqa
1333
+ name: MTEB FiQA2018
1334
+ config: default
1335
+ split: test
1336
+ revision: None
1337
+ metrics:
1338
+ - type: map_at_1
1339
+ value: 22.651
1340
+ - type: map_at_10
1341
+ value: 36.886
1342
+ - type: map_at_100
1343
+ value: 38.811
1344
+ - type: map_at_1000
1345
+ value: 38.981
1346
+ - type: map_at_3
1347
+ value: 32.538
1348
+ - type: map_at_5
1349
+ value: 34.763
1350
+ - type: mrr_at_1
1351
+ value: 44.444
1352
+ - type: mrr_at_10
1353
+ value: 53.168000000000006
1354
+ - type: mrr_at_100
1355
+ value: 53.839000000000006
1356
+ - type: mrr_at_1000
1357
+ value: 53.869
1358
+ - type: mrr_at_3
1359
+ value: 50.54
1360
+ - type: mrr_at_5
1361
+ value: 52.068000000000005
1362
+ - type: ndcg_at_1
1363
+ value: 44.444
1364
+ - type: ndcg_at_10
1365
+ value: 44.994
1366
+ - type: ndcg_at_100
1367
+ value: 51.599
1368
+ - type: ndcg_at_1000
1369
+ value: 54.339999999999996
1370
+ - type: ndcg_at_3
1371
+ value: 41.372
1372
+ - type: ndcg_at_5
1373
+ value: 42.149
1374
+ - type: precision_at_1
1375
+ value: 44.444
1376
+ - type: precision_at_10
1377
+ value: 12.407
1378
+ - type: precision_at_100
1379
+ value: 1.9269999999999998
1380
+ - type: precision_at_1000
1381
+ value: 0.242
1382
+ - type: precision_at_3
1383
+ value: 27.726
1384
+ - type: precision_at_5
1385
+ value: 19.814999999999998
1386
+ - type: recall_at_1
1387
+ value: 22.651
1388
+ - type: recall_at_10
1389
+ value: 52.075
1390
+ - type: recall_at_100
1391
+ value: 76.51400000000001
1392
+ - type: recall_at_1000
1393
+ value: 92.852
1394
+ - type: recall_at_3
1395
+ value: 37.236000000000004
1396
+ - type: recall_at_5
1397
+ value: 43.175999999999995
1398
+ - task:
1399
+ type: Retrieval
1400
+ dataset:
1401
+ type: hotpotqa
1402
+ name: MTEB HotpotQA
1403
+ config: default
1404
+ split: test
1405
+ revision: None
1406
+ metrics:
1407
+ - type: map_at_1
1408
+ value: 40.777
1409
+ - type: map_at_10
1410
+ value: 66.79899999999999
1411
+ - type: map_at_100
1412
+ value: 67.65299999999999
1413
+ - type: map_at_1000
1414
+ value: 67.706
1415
+ - type: map_at_3
1416
+ value: 63.352
1417
+ - type: map_at_5
1418
+ value: 65.52900000000001
1419
+ - type: mrr_at_1
1420
+ value: 81.553
1421
+ - type: mrr_at_10
1422
+ value: 86.983
1423
+ - type: mrr_at_100
1424
+ value: 87.132
1425
+ - type: mrr_at_1000
1426
+ value: 87.136
1427
+ - type: mrr_at_3
1428
+ value: 86.156
1429
+ - type: mrr_at_5
1430
+ value: 86.726
1431
+ - type: ndcg_at_1
1432
+ value: 81.553
1433
+ - type: ndcg_at_10
1434
+ value: 74.64
1435
+ - type: ndcg_at_100
1436
+ value: 77.459
1437
+ - type: ndcg_at_1000
1438
+ value: 78.43
1439
+ - type: ndcg_at_3
1440
+ value: 69.878
1441
+ - type: ndcg_at_5
1442
+ value: 72.59400000000001
1443
+ - type: precision_at_1
1444
+ value: 81.553
1445
+ - type: precision_at_10
1446
+ value: 15.654000000000002
1447
+ - type: precision_at_100
1448
+ value: 1.783
1449
+ - type: precision_at_1000
1450
+ value: 0.191
1451
+ - type: precision_at_3
1452
+ value: 45.199
1453
+ - type: precision_at_5
1454
+ value: 29.267
1455
+ - type: recall_at_1
1456
+ value: 40.777
1457
+ - type: recall_at_10
1458
+ value: 78.271
1459
+ - type: recall_at_100
1460
+ value: 89.129
1461
+ - type: recall_at_1000
1462
+ value: 95.49
1463
+ - type: recall_at_3
1464
+ value: 67.79899999999999
1465
+ - type: recall_at_5
1466
+ value: 73.167
1467
+ - task:
1468
+ type: Classification
1469
+ dataset:
1470
+ type: mteb/imdb
1471
+ name: MTEB ImdbClassification
1472
+ config: default
1473
+ split: test
1474
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1475
+ metrics:
1476
+ - type: accuracy
1477
+ value: 93.5064
1478
+ - type: ap
1479
+ value: 90.25495114444111
1480
+ - type: f1
1481
+ value: 93.5012434973381
1482
+ - task:
1483
+ type: Retrieval
1484
+ dataset:
1485
+ type: msmarco
1486
+ name: MTEB MSMARCO
1487
+ config: default
1488
+ split: dev
1489
+ revision: None
1490
+ metrics:
1491
+ - type: map_at_1
1492
+ value: 23.301
1493
+ - type: map_at_10
1494
+ value: 35.657
1495
+ - type: map_at_100
1496
+ value: 36.797000000000004
1497
+ - type: map_at_1000
1498
+ value: 36.844
1499
+ - type: map_at_3
1500
+ value: 31.743
1501
+ - type: map_at_5
1502
+ value: 34.003
1503
+ - type: mrr_at_1
1504
+ value: 23.854
1505
+ - type: mrr_at_10
1506
+ value: 36.242999999999995
1507
+ - type: mrr_at_100
1508
+ value: 37.32
1509
+ - type: mrr_at_1000
1510
+ value: 37.361
1511
+ - type: mrr_at_3
1512
+ value: 32.4
1513
+ - type: mrr_at_5
1514
+ value: 34.634
1515
+ - type: ndcg_at_1
1516
+ value: 23.868000000000002
1517
+ - type: ndcg_at_10
1518
+ value: 42.589
1519
+ - type: ndcg_at_100
1520
+ value: 48.031
1521
+ - type: ndcg_at_1000
1522
+ value: 49.189
1523
+ - type: ndcg_at_3
1524
+ value: 34.649
1525
+ - type: ndcg_at_5
1526
+ value: 38.676
1527
+ - type: precision_at_1
1528
+ value: 23.868000000000002
1529
+ - type: precision_at_10
1530
+ value: 6.6850000000000005
1531
+ - type: precision_at_100
1532
+ value: 0.9400000000000001
1533
+ - type: precision_at_1000
1534
+ value: 0.104
1535
+ - type: precision_at_3
1536
+ value: 14.651
1537
+ - type: precision_at_5
1538
+ value: 10.834000000000001
1539
+ - type: recall_at_1
1540
+ value: 23.301
1541
+ - type: recall_at_10
1542
+ value: 63.88700000000001
1543
+ - type: recall_at_100
1544
+ value: 88.947
1545
+ - type: recall_at_1000
1546
+ value: 97.783
1547
+ - type: recall_at_3
1548
+ value: 42.393
1549
+ - type: recall_at_5
1550
+ value: 52.036
1551
+ - task:
1552
+ type: Classification
1553
+ dataset:
1554
+ type: mteb/mtop_domain
1555
+ name: MTEB MTOPDomainClassification (en)
1556
+ config: en
1557
+ split: test
1558
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1559
+ metrics:
1560
+ - type: accuracy
1561
+ value: 94.64888280893753
1562
+ - type: f1
1563
+ value: 94.41310774203512
1564
+ - task:
1565
+ type: Classification
1566
+ dataset:
1567
+ type: mteb/mtop_intent
1568
+ name: MTEB MTOPIntentClassification (en)
1569
+ config: en
1570
+ split: test
1571
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1572
+ metrics:
1573
+ - type: accuracy
1574
+ value: 79.72184222526221
1575
+ - type: f1
1576
+ value: 61.522034067350106
1577
+ - task:
1578
+ type: Classification
1579
+ dataset:
1580
+ type: mteb/amazon_massive_intent
1581
+ name: MTEB MassiveIntentClassification (en)
1582
+ config: en
1583
+ split: test
1584
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1585
+ metrics:
1586
+ - type: accuracy
1587
+ value: 79.60659045057163
1588
+ - type: f1
1589
+ value: 77.268649687049
1590
+ - task:
1591
+ type: Classification
1592
+ dataset:
1593
+ type: mteb/amazon_massive_scenario
1594
+ name: MTEB MassiveScenarioClassification (en)
1595
+ config: en
1596
+ split: test
1597
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1598
+ metrics:
1599
+ - type: accuracy
1600
+ value: 81.83254875588432
1601
+ - type: f1
1602
+ value: 81.61520635919082
1603
+ - task:
1604
+ type: Clustering
1605
+ dataset:
1606
+ type: mteb/medrxiv-clustering-p2p
1607
+ name: MTEB MedrxivClusteringP2P
1608
+ config: default
1609
+ split: test
1610
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1611
+ metrics:
1612
+ - type: v_measure
1613
+ value: 36.31529875009507
1614
+ - task:
1615
+ type: Clustering
1616
+ dataset:
1617
+ type: mteb/medrxiv-clustering-s2s
1618
+ name: MTEB MedrxivClusteringS2S
1619
+ config: default
1620
+ split: test
1621
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1622
+ metrics:
1623
+ - type: v_measure
1624
+ value: 31.734233714415073
1625
+ - task:
1626
+ type: Reranking
1627
+ dataset:
1628
+ type: mteb/mind_small
1629
+ name: MTEB MindSmallReranking
1630
+ config: default
1631
+ split: test
1632
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1633
+ metrics:
1634
+ - type: map
1635
+ value: 30.994501713009452
1636
+ - type: mrr
1637
+ value: 32.13512850703073
1638
+ - task:
1639
+ type: Retrieval
1640
+ dataset:
1641
+ type: nfcorpus
1642
+ name: MTEB NFCorpus
1643
+ config: default
1644
+ split: test
1645
+ revision: None
1646
+ metrics:
1647
+ - type: map_at_1
1648
+ value: 6.603000000000001
1649
+ - type: map_at_10
1650
+ value: 13.767999999999999
1651
+ - type: map_at_100
1652
+ value: 17.197000000000003
1653
+ - type: map_at_1000
1654
+ value: 18.615000000000002
1655
+ - type: map_at_3
1656
+ value: 10.567
1657
+ - type: map_at_5
1658
+ value: 12.078999999999999
1659
+ - type: mrr_at_1
1660
+ value: 44.891999999999996
1661
+ - type: mrr_at_10
1662
+ value: 53.75299999999999
1663
+ - type: mrr_at_100
1664
+ value: 54.35
1665
+ - type: mrr_at_1000
1666
+ value: 54.388000000000005
1667
+ - type: mrr_at_3
1668
+ value: 51.495999999999995
1669
+ - type: mrr_at_5
1670
+ value: 52.688
1671
+ - type: ndcg_at_1
1672
+ value: 43.189
1673
+ - type: ndcg_at_10
1674
+ value: 34.567
1675
+ - type: ndcg_at_100
1676
+ value: 32.273
1677
+ - type: ndcg_at_1000
1678
+ value: 41.321999999999996
1679
+ - type: ndcg_at_3
1680
+ value: 40.171
1681
+ - type: ndcg_at_5
1682
+ value: 37.502
1683
+ - type: precision_at_1
1684
+ value: 44.582
1685
+ - type: precision_at_10
1686
+ value: 25.139
1687
+ - type: precision_at_100
1688
+ value: 7.739999999999999
1689
+ - type: precision_at_1000
1690
+ value: 2.054
1691
+ - type: precision_at_3
1692
+ value: 37.152
1693
+ - type: precision_at_5
1694
+ value: 31.826999999999998
1695
+ - type: recall_at_1
1696
+ value: 6.603000000000001
1697
+ - type: recall_at_10
1698
+ value: 17.023
1699
+ - type: recall_at_100
1700
+ value: 32.914
1701
+ - type: recall_at_1000
1702
+ value: 64.44800000000001
1703
+ - type: recall_at_3
1704
+ value: 11.457
1705
+ - type: recall_at_5
1706
+ value: 13.816
1707
+ - task:
1708
+ type: Retrieval
1709
+ dataset:
1710
+ type: nq
1711
+ name: MTEB NQ
1712
+ config: default
1713
+ split: test
1714
+ revision: None
1715
+ metrics:
1716
+ - type: map_at_1
1717
+ value: 30.026000000000003
1718
+ - type: map_at_10
1719
+ value: 45.429
1720
+ - type: map_at_100
1721
+ value: 46.45
1722
+ - type: map_at_1000
1723
+ value: 46.478
1724
+ - type: map_at_3
1725
+ value: 41.147
1726
+ - type: map_at_5
1727
+ value: 43.627
1728
+ - type: mrr_at_1
1729
+ value: 33.951
1730
+ - type: mrr_at_10
1731
+ value: 47.953
1732
+ - type: mrr_at_100
1733
+ value: 48.731
1734
+ - type: mrr_at_1000
1735
+ value: 48.751
1736
+ - type: mrr_at_3
1737
+ value: 44.39
1738
+ - type: mrr_at_5
1739
+ value: 46.533
1740
+ - type: ndcg_at_1
1741
+ value: 33.951
1742
+ - type: ndcg_at_10
1743
+ value: 53.24100000000001
1744
+ - type: ndcg_at_100
1745
+ value: 57.599999999999994
1746
+ - type: ndcg_at_1000
1747
+ value: 58.270999999999994
1748
+ - type: ndcg_at_3
1749
+ value: 45.190999999999995
1750
+ - type: ndcg_at_5
1751
+ value: 49.339
1752
+ - type: precision_at_1
1753
+ value: 33.951
1754
+ - type: precision_at_10
1755
+ value: 8.856
1756
+ - type: precision_at_100
1757
+ value: 1.133
1758
+ - type: precision_at_1000
1759
+ value: 0.12
1760
+ - type: precision_at_3
1761
+ value: 20.713
1762
+ - type: precision_at_5
1763
+ value: 14.838000000000001
1764
+ - type: recall_at_1
1765
+ value: 30.026000000000003
1766
+ - type: recall_at_10
1767
+ value: 74.512
1768
+ - type: recall_at_100
1769
+ value: 93.395
1770
+ - type: recall_at_1000
1771
+ value: 98.402
1772
+ - type: recall_at_3
1773
+ value: 53.677
1774
+ - type: recall_at_5
1775
+ value: 63.198
1776
+ - task:
1777
+ type: Retrieval
1778
+ dataset:
1779
+ type: quora
1780
+ name: MTEB QuoraRetrieval
1781
+ config: default
1782
+ split: test
1783
+ revision: None
1784
+ metrics:
1785
+ - type: map_at_1
1786
+ value: 71.41300000000001
1787
+ - type: map_at_10
1788
+ value: 85.387
1789
+ - type: map_at_100
1790
+ value: 86.027
1791
+ - type: map_at_1000
1792
+ value: 86.041
1793
+ - type: map_at_3
1794
+ value: 82.543
1795
+ - type: map_at_5
1796
+ value: 84.304
1797
+ - type: mrr_at_1
1798
+ value: 82.35
1799
+ - type: mrr_at_10
1800
+ value: 88.248
1801
+ - type: mrr_at_100
1802
+ value: 88.348
1803
+ - type: mrr_at_1000
1804
+ value: 88.349
1805
+ - type: mrr_at_3
1806
+ value: 87.348
1807
+ - type: mrr_at_5
1808
+ value: 87.96300000000001
1809
+ - type: ndcg_at_1
1810
+ value: 82.37
1811
+ - type: ndcg_at_10
1812
+ value: 88.98
1813
+ - type: ndcg_at_100
1814
+ value: 90.16499999999999
1815
+ - type: ndcg_at_1000
1816
+ value: 90.239
1817
+ - type: ndcg_at_3
1818
+ value: 86.34100000000001
1819
+ - type: ndcg_at_5
1820
+ value: 87.761
1821
+ - type: precision_at_1
1822
+ value: 82.37
1823
+ - type: precision_at_10
1824
+ value: 13.471
1825
+ - type: precision_at_100
1826
+ value: 1.534
1827
+ - type: precision_at_1000
1828
+ value: 0.157
1829
+ - type: precision_at_3
1830
+ value: 37.827
1831
+ - type: precision_at_5
1832
+ value: 24.773999999999997
1833
+ - type: recall_at_1
1834
+ value: 71.41300000000001
1835
+ - type: recall_at_10
1836
+ value: 95.748
1837
+ - type: recall_at_100
1838
+ value: 99.69200000000001
1839
+ - type: recall_at_1000
1840
+ value: 99.98
1841
+ - type: recall_at_3
1842
+ value: 87.996
1843
+ - type: recall_at_5
1844
+ value: 92.142
1845
+ - task:
1846
+ type: Clustering
1847
+ dataset:
1848
+ type: mteb/reddit-clustering
1849
+ name: MTEB RedditClustering
1850
+ config: default
1851
+ split: test
1852
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1853
+ metrics:
1854
+ - type: v_measure
1855
+ value: 56.96878497780007
1856
+ - task:
1857
+ type: Clustering
1858
+ dataset:
1859
+ type: mteb/reddit-clustering-p2p
1860
+ name: MTEB RedditClusteringP2P
1861
+ config: default
1862
+ split: test
1863
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1864
+ metrics:
1865
+ - type: v_measure
1866
+ value: 65.31371347128074
1867
+ - task:
1868
+ type: Retrieval
1869
+ dataset:
1870
+ type: scidocs
1871
+ name: MTEB SCIDOCS
1872
+ config: default
1873
+ split: test
1874
+ revision: None
1875
+ metrics:
1876
+ - type: map_at_1
1877
+ value: 5.287
1878
+ - type: map_at_10
1879
+ value: 13.530000000000001
1880
+ - type: map_at_100
1881
+ value: 15.891
1882
+ - type: map_at_1000
1883
+ value: 16.245
1884
+ - type: map_at_3
1885
+ value: 9.612
1886
+ - type: map_at_5
1887
+ value: 11.672
1888
+ - type: mrr_at_1
1889
+ value: 26
1890
+ - type: mrr_at_10
1891
+ value: 37.335
1892
+ - type: mrr_at_100
1893
+ value: 38.443
1894
+ - type: mrr_at_1000
1895
+ value: 38.486
1896
+ - type: mrr_at_3
1897
+ value: 33.783
1898
+ - type: mrr_at_5
1899
+ value: 36.028
1900
+ - type: ndcg_at_1
1901
+ value: 26
1902
+ - type: ndcg_at_10
1903
+ value: 22.215
1904
+ - type: ndcg_at_100
1905
+ value: 31.101
1906
+ - type: ndcg_at_1000
1907
+ value: 36.809
1908
+ - type: ndcg_at_3
1909
+ value: 21.104
1910
+ - type: ndcg_at_5
1911
+ value: 18.759999999999998
1912
+ - type: precision_at_1
1913
+ value: 26
1914
+ - type: precision_at_10
1915
+ value: 11.43
1916
+ - type: precision_at_100
1917
+ value: 2.424
1918
+ - type: precision_at_1000
1919
+ value: 0.379
1920
+ - type: precision_at_3
1921
+ value: 19.7
1922
+ - type: precision_at_5
1923
+ value: 16.619999999999997
1924
+ - type: recall_at_1
1925
+ value: 5.287
1926
+ - type: recall_at_10
1927
+ value: 23.18
1928
+ - type: recall_at_100
1929
+ value: 49.208
1930
+ - type: recall_at_1000
1931
+ value: 76.85300000000001
1932
+ - type: recall_at_3
1933
+ value: 11.991999999999999
1934
+ - type: recall_at_5
1935
+ value: 16.85
1936
+ - task:
1937
+ type: STS
1938
+ dataset:
1939
+ type: mteb/sickr-sts
1940
+ name: MTEB SICK-R
1941
+ config: default
1942
+ split: test
1943
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1944
+ metrics:
1945
+ - type: cos_sim_pearson
1946
+ value: 83.87834913790886
1947
+ - type: cos_sim_spearman
1948
+ value: 81.04583513112122
1949
+ - type: euclidean_pearson
1950
+ value: 81.20484174558065
1951
+ - type: euclidean_spearman
1952
+ value: 80.76430832561769
1953
+ - type: manhattan_pearson
1954
+ value: 81.21416730978615
1955
+ - type: manhattan_spearman
1956
+ value: 80.7797637394211
1957
+ - task:
1958
+ type: STS
1959
+ dataset:
1960
+ type: mteb/sts12-sts
1961
+ name: MTEB STS12
1962
+ config: default
1963
+ split: test
1964
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1965
+ metrics:
1966
+ - type: cos_sim_pearson
1967
+ value: 86.56143998865157
1968
+ - type: cos_sim_spearman
1969
+ value: 79.75387012744471
1970
+ - type: euclidean_pearson
1971
+ value: 83.7877519997019
1972
+ - type: euclidean_spearman
1973
+ value: 79.90489748003296
1974
+ - type: manhattan_pearson
1975
+ value: 83.7540590666095
1976
+ - type: manhattan_spearman
1977
+ value: 79.86434577931573
1978
+ - task:
1979
+ type: STS
1980
+ dataset:
1981
+ type: mteb/sts13-sts
1982
+ name: MTEB STS13
1983
+ config: default
1984
+ split: test
1985
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1986
+ metrics:
1987
+ - type: cos_sim_pearson
1988
+ value: 83.92102564177941
1989
+ - type: cos_sim_spearman
1990
+ value: 84.98234585939103
1991
+ - type: euclidean_pearson
1992
+ value: 84.47729567593696
1993
+ - type: euclidean_spearman
1994
+ value: 85.09490696194469
1995
+ - type: manhattan_pearson
1996
+ value: 84.38622951588229
1997
+ - type: manhattan_spearman
1998
+ value: 85.02507171545574
1999
+ - task:
2000
+ type: STS
2001
+ dataset:
2002
+ type: mteb/sts14-sts
2003
+ name: MTEB STS14
2004
+ config: default
2005
+ split: test
2006
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2007
+ metrics:
2008
+ - type: cos_sim_pearson
2009
+ value: 80.1891164763377
2010
+ - type: cos_sim_spearman
2011
+ value: 80.7997969966883
2012
+ - type: euclidean_pearson
2013
+ value: 80.48572256162396
2014
+ - type: euclidean_spearman
2015
+ value: 80.57851903536378
2016
+ - type: manhattan_pearson
2017
+ value: 80.4324819433651
2018
+ - type: manhattan_spearman
2019
+ value: 80.5074526239062
2020
+ - task:
2021
+ type: STS
2022
+ dataset:
2023
+ type: mteb/sts15-sts
2024
+ name: MTEB STS15
2025
+ config: default
2026
+ split: test
2027
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2028
+ metrics:
2029
+ - type: cos_sim_pearson
2030
+ value: 82.64319975116025
2031
+ - type: cos_sim_spearman
2032
+ value: 84.88671197763652
2033
+ - type: euclidean_pearson
2034
+ value: 84.74692193293231
2035
+ - type: euclidean_spearman
2036
+ value: 85.27151722073653
2037
+ - type: manhattan_pearson
2038
+ value: 84.72460516785438
2039
+ - type: manhattan_spearman
2040
+ value: 85.26518899786687
2041
+ - task:
2042
+ type: STS
2043
+ dataset:
2044
+ type: mteb/sts16-sts
2045
+ name: MTEB STS16
2046
+ config: default
2047
+ split: test
2048
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2049
+ metrics:
2050
+ - type: cos_sim_pearson
2051
+ value: 83.24687565822381
2052
+ - type: cos_sim_spearman
2053
+ value: 85.60418454111263
2054
+ - type: euclidean_pearson
2055
+ value: 84.85829740169851
2056
+ - type: euclidean_spearman
2057
+ value: 85.66378014138306
2058
+ - type: manhattan_pearson
2059
+ value: 84.84672408808835
2060
+ - type: manhattan_spearman
2061
+ value: 85.63331924364891
2062
+ - task:
2063
+ type: STS
2064
+ dataset:
2065
+ type: mteb/sts17-crosslingual-sts
2066
+ name: MTEB STS17 (en-en)
2067
+ config: en-en
2068
+ split: test
2069
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2070
+ metrics:
2071
+ - type: cos_sim_pearson
2072
+ value: 84.87758895415485
2073
+ - type: cos_sim_spearman
2074
+ value: 85.8193745617297
2075
+ - type: euclidean_pearson
2076
+ value: 85.78719118848134
2077
+ - type: euclidean_spearman
2078
+ value: 84.35797575385688
2079
+ - type: manhattan_pearson
2080
+ value: 85.97919844815692
2081
+ - type: manhattan_spearman
2082
+ value: 84.58334745175151
2083
+ - task:
2084
+ type: STS
2085
+ dataset:
2086
+ type: mteb/sts22-crosslingual-sts
2087
+ name: MTEB STS22 (en)
2088
+ config: en
2089
+ split: test
2090
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2091
+ metrics:
2092
+ - type: cos_sim_pearson
2093
+ value: 67.27076035963599
2094
+ - type: cos_sim_spearman
2095
+ value: 67.21433656439973
2096
+ - type: euclidean_pearson
2097
+ value: 68.07434078679324
2098
+ - type: euclidean_spearman
2099
+ value: 66.0249731719049
2100
+ - type: manhattan_pearson
2101
+ value: 67.95495198947476
2102
+ - type: manhattan_spearman
2103
+ value: 65.99893908331886
2104
+ - task:
2105
+ type: STS
2106
+ dataset:
2107
+ type: mteb/stsbenchmark-sts
2108
+ name: MTEB STSBenchmark
2109
+ config: default
2110
+ split: test
2111
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2112
+ metrics:
2113
+ - type: cos_sim_pearson
2114
+ value: 82.22437747056817
2115
+ - type: cos_sim_spearman
2116
+ value: 85.0995685206174
2117
+ - type: euclidean_pearson
2118
+ value: 84.08616925603394
2119
+ - type: euclidean_spearman
2120
+ value: 84.89633925691658
2121
+ - type: manhattan_pearson
2122
+ value: 84.08332675923133
2123
+ - type: manhattan_spearman
2124
+ value: 84.8858228112915
2125
+ - task:
2126
+ type: Reranking
2127
+ dataset:
2128
+ type: mteb/scidocs-reranking
2129
+ name: MTEB SciDocsRR
2130
+ config: default
2131
+ split: test
2132
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2133
+ metrics:
2134
+ - type: map
2135
+ value: 87.6909022589666
2136
+ - type: mrr
2137
+ value: 96.43341952165481
2138
+ - task:
2139
+ type: Retrieval
2140
+ dataset:
2141
+ type: scifact
2142
+ name: MTEB SciFact
2143
+ config: default
2144
+ split: test
2145
+ revision: None
2146
+ metrics:
2147
+ - type: map_at_1
2148
+ value: 57.660999999999994
2149
+ - type: map_at_10
2150
+ value: 67.625
2151
+ - type: map_at_100
2152
+ value: 68.07600000000001
2153
+ - type: map_at_1000
2154
+ value: 68.10199999999999
2155
+ - type: map_at_3
2156
+ value: 64.50399999999999
2157
+ - type: map_at_5
2158
+ value: 66.281
2159
+ - type: mrr_at_1
2160
+ value: 61
2161
+ - type: mrr_at_10
2162
+ value: 68.953
2163
+ - type: mrr_at_100
2164
+ value: 69.327
2165
+ - type: mrr_at_1000
2166
+ value: 69.352
2167
+ - type: mrr_at_3
2168
+ value: 66.833
2169
+ - type: mrr_at_5
2170
+ value: 68.05
2171
+ - type: ndcg_at_1
2172
+ value: 61
2173
+ - type: ndcg_at_10
2174
+ value: 72.369
2175
+ - type: ndcg_at_100
2176
+ value: 74.237
2177
+ - type: ndcg_at_1000
2178
+ value: 74.939
2179
+ - type: ndcg_at_3
2180
+ value: 67.284
2181
+ - type: ndcg_at_5
2182
+ value: 69.72500000000001
2183
+ - type: precision_at_1
2184
+ value: 61
2185
+ - type: precision_at_10
2186
+ value: 9.733
2187
+ - type: precision_at_100
2188
+ value: 1.0670000000000002
2189
+ - type: precision_at_1000
2190
+ value: 0.11199999999999999
2191
+ - type: precision_at_3
2192
+ value: 26.222
2193
+ - type: precision_at_5
2194
+ value: 17.4
2195
+ - type: recall_at_1
2196
+ value: 57.660999999999994
2197
+ - type: recall_at_10
2198
+ value: 85.656
2199
+ - type: recall_at_100
2200
+ value: 93.833
2201
+ - type: recall_at_1000
2202
+ value: 99.333
2203
+ - type: recall_at_3
2204
+ value: 71.961
2205
+ - type: recall_at_5
2206
+ value: 78.094
2207
+ - task:
2208
+ type: PairClassification
2209
+ dataset:
2210
+ type: mteb/sprintduplicatequestions-pairclassification
2211
+ name: MTEB SprintDuplicateQuestions
2212
+ config: default
2213
+ split: test
2214
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2215
+ metrics:
2216
+ - type: cos_sim_accuracy
2217
+ value: 99.86930693069307
2218
+ - type: cos_sim_ap
2219
+ value: 96.76685487950894
2220
+ - type: cos_sim_f1
2221
+ value: 93.44587884806354
2222
+ - type: cos_sim_precision
2223
+ value: 92.80078895463511
2224
+ - type: cos_sim_recall
2225
+ value: 94.1
2226
+ - type: dot_accuracy
2227
+ value: 99.54356435643564
2228
+ - type: dot_ap
2229
+ value: 81.18659960405607
2230
+ - type: dot_f1
2231
+ value: 75.78008915304605
2232
+ - type: dot_precision
2233
+ value: 75.07360157016683
2234
+ - type: dot_recall
2235
+ value: 76.5
2236
+ - type: euclidean_accuracy
2237
+ value: 99.87326732673267
2238
+ - type: euclidean_ap
2239
+ value: 96.8102411908941
2240
+ - type: euclidean_f1
2241
+ value: 93.6127744510978
2242
+ - type: euclidean_precision
2243
+ value: 93.42629482071713
2244
+ - type: euclidean_recall
2245
+ value: 93.8
2246
+ - type: manhattan_accuracy
2247
+ value: 99.87425742574257
2248
+ - type: manhattan_ap
2249
+ value: 96.82857341435529
2250
+ - type: manhattan_f1
2251
+ value: 93.62129583124059
2252
+ - type: manhattan_precision
2253
+ value: 94.04641775983855
2254
+ - type: manhattan_recall
2255
+ value: 93.2
2256
+ - type: max_accuracy
2257
+ value: 99.87425742574257
2258
+ - type: max_ap
2259
+ value: 96.82857341435529
2260
+ - type: max_f1
2261
+ value: 93.62129583124059
2262
+ - task:
2263
+ type: Clustering
2264
+ dataset:
2265
+ type: mteb/stackexchange-clustering
2266
+ name: MTEB StackExchangeClustering
2267
+ config: default
2268
+ split: test
2269
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2270
+ metrics:
2271
+ - type: v_measure
2272
+ value: 65.92560972698926
2273
+ - task:
2274
+ type: Clustering
2275
+ dataset:
2276
+ type: mteb/stackexchange-clustering-p2p
2277
+ name: MTEB StackExchangeClusteringP2P
2278
+ config: default
2279
+ split: test
2280
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2281
+ metrics:
2282
+ - type: v_measure
2283
+ value: 34.92797240259008
2284
+ - task:
2285
+ type: Reranking
2286
+ dataset:
2287
+ type: mteb/stackoverflowdupquestions-reranking
2288
+ name: MTEB StackOverflowDupQuestions
2289
+ config: default
2290
+ split: test
2291
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2292
+ metrics:
2293
+ - type: map
2294
+ value: 55.244624045597654
2295
+ - type: mrr
2296
+ value: 56.185303666921314
2297
+ - task:
2298
+ type: Summarization
2299
+ dataset:
2300
+ type: mteb/summeval
2301
+ name: MTEB SummEval
2302
+ config: default
2303
+ split: test
2304
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2305
+ metrics:
2306
+ - type: cos_sim_pearson
2307
+ value: 31.02491987312937
2308
+ - type: cos_sim_spearman
2309
+ value: 32.055592206679734
2310
+ - type: dot_pearson
2311
+ value: 24.731627575422557
2312
+ - type: dot_spearman
2313
+ value: 24.308029077069733
2314
+ - task:
2315
+ type: Retrieval
2316
+ dataset:
2317
+ type: trec-covid
2318
+ name: MTEB TRECCOVID
2319
+ config: default
2320
+ split: test
2321
+ revision: None
2322
+ metrics:
2323
+ - type: map_at_1
2324
+ value: 0.231
2325
+ - type: map_at_10
2326
+ value: 1.899
2327
+ - type: map_at_100
2328
+ value: 9.498
2329
+ - type: map_at_1000
2330
+ value: 20.979999999999997
2331
+ - type: map_at_3
2332
+ value: 0.652
2333
+ - type: map_at_5
2334
+ value: 1.069
2335
+ - type: mrr_at_1
2336
+ value: 88
2337
+ - type: mrr_at_10
2338
+ value: 93.4
2339
+ - type: mrr_at_100
2340
+ value: 93.4
2341
+ - type: mrr_at_1000
2342
+ value: 93.4
2343
+ - type: mrr_at_3
2344
+ value: 93
2345
+ - type: mrr_at_5
2346
+ value: 93.4
2347
+ - type: ndcg_at_1
2348
+ value: 86
2349
+ - type: ndcg_at_10
2350
+ value: 75.375
2351
+ - type: ndcg_at_100
2352
+ value: 52.891999999999996
2353
+ - type: ndcg_at_1000
2354
+ value: 44.952999999999996
2355
+ - type: ndcg_at_3
2356
+ value: 81.05
2357
+ - type: ndcg_at_5
2358
+ value: 80.175
2359
+ - type: precision_at_1
2360
+ value: 88
2361
+ - type: precision_at_10
2362
+ value: 79
2363
+ - type: precision_at_100
2364
+ value: 53.16
2365
+ - type: precision_at_1000
2366
+ value: 19.408
2367
+ - type: precision_at_3
2368
+ value: 85.333
2369
+ - type: precision_at_5
2370
+ value: 84
2371
+ - type: recall_at_1
2372
+ value: 0.231
2373
+ - type: recall_at_10
2374
+ value: 2.078
2375
+ - type: recall_at_100
2376
+ value: 12.601
2377
+ - type: recall_at_1000
2378
+ value: 41.296
2379
+ - type: recall_at_3
2380
+ value: 0.6779999999999999
2381
+ - type: recall_at_5
2382
+ value: 1.1360000000000001
2383
+ - task:
2384
+ type: Retrieval
2385
+ dataset:
2386
+ type: webis-touche2020
2387
+ name: MTEB Touche2020
2388
+ config: default
2389
+ split: test
2390
+ revision: None
2391
+ metrics:
2392
+ - type: map_at_1
2393
+ value: 2.782
2394
+ - type: map_at_10
2395
+ value: 10.204
2396
+ - type: map_at_100
2397
+ value: 16.176
2398
+ - type: map_at_1000
2399
+ value: 17.456
2400
+ - type: map_at_3
2401
+ value: 5.354
2402
+ - type: map_at_5
2403
+ value: 7.503
2404
+ - type: mrr_at_1
2405
+ value: 40.816
2406
+ - type: mrr_at_10
2407
+ value: 54.010000000000005
2408
+ - type: mrr_at_100
2409
+ value: 54.49
2410
+ - type: mrr_at_1000
2411
+ value: 54.49
2412
+ - type: mrr_at_3
2413
+ value: 48.980000000000004
2414
+ - type: mrr_at_5
2415
+ value: 51.735
2416
+ - type: ndcg_at_1
2417
+ value: 36.735
2418
+ - type: ndcg_at_10
2419
+ value: 26.61
2420
+ - type: ndcg_at_100
2421
+ value: 36.967
2422
+ - type: ndcg_at_1000
2423
+ value: 47.274
2424
+ - type: ndcg_at_3
2425
+ value: 30.363
2426
+ - type: ndcg_at_5
2427
+ value: 29.448999999999998
2428
+ - type: precision_at_1
2429
+ value: 40.816
2430
+ - type: precision_at_10
2431
+ value: 23.878
2432
+ - type: precision_at_100
2433
+ value: 7.693999999999999
2434
+ - type: precision_at_1000
2435
+ value: 1.4489999999999998
2436
+ - type: precision_at_3
2437
+ value: 31.293
2438
+ - type: precision_at_5
2439
+ value: 29.796
2440
+ - type: recall_at_1
2441
+ value: 2.782
2442
+ - type: recall_at_10
2443
+ value: 16.485
2444
+ - type: recall_at_100
2445
+ value: 46.924
2446
+ - type: recall_at_1000
2447
+ value: 79.365
2448
+ - type: recall_at_3
2449
+ value: 6.52
2450
+ - type: recall_at_5
2451
+ value: 10.48
2452
+ - task:
2453
+ type: Classification
2454
+ dataset:
2455
+ type: mteb/toxic_conversations_50k
2456
+ name: MTEB ToxicConversationsClassification
2457
+ config: default
2458
+ split: test
2459
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2460
+ metrics:
2461
+ - type: accuracy
2462
+ value: 70.08300000000001
2463
+ - type: ap
2464
+ value: 13.91559884590195
2465
+ - type: f1
2466
+ value: 53.956838444291364
2467
+ - task:
2468
+ type: Classification
2469
+ dataset:
2470
+ type: mteb/tweet_sentiment_extraction
2471
+ name: MTEB TweetSentimentExtractionClassification
2472
+ config: default
2473
+ split: test
2474
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2475
+ metrics:
2476
+ - type: accuracy
2477
+ value: 59.34069043576683
2478
+ - type: f1
2479
+ value: 59.662041994618406
2480
+ - task:
2481
+ type: Clustering
2482
+ dataset:
2483
+ type: mteb/twentynewsgroups-clustering
2484
+ name: MTEB TwentyNewsgroupsClustering
2485
+ config: default
2486
+ split: test
2487
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2488
+ metrics:
2489
+ - type: v_measure
2490
+ value: 53.70780611078653
2491
+ - task:
2492
+ type: PairClassification
2493
+ dataset:
2494
+ type: mteb/twittersemeval2015-pairclassification
2495
+ name: MTEB TwitterSemEval2015
2496
+ config: default
2497
+ split: test
2498
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2499
+ metrics:
2500
+ - type: cos_sim_accuracy
2501
+ value: 87.10734934732073
2502
+ - type: cos_sim_ap
2503
+ value: 77.58349999516054
2504
+ - type: cos_sim_f1
2505
+ value: 70.25391395868965
2506
+ - type: cos_sim_precision
2507
+ value: 70.06035161374967
2508
+ - type: cos_sim_recall
2509
+ value: 70.44854881266491
2510
+ - type: dot_accuracy
2511
+ value: 80.60439887941826
2512
+ - type: dot_ap
2513
+ value: 54.52935200483575
2514
+ - type: dot_f1
2515
+ value: 54.170444242973716
2516
+ - type: dot_precision
2517
+ value: 47.47715534366309
2518
+ - type: dot_recall
2519
+ value: 63.06068601583114
2520
+ - type: euclidean_accuracy
2521
+ value: 87.26828396018358
2522
+ - type: euclidean_ap
2523
+ value: 78.00158454104036
2524
+ - type: euclidean_f1
2525
+ value: 70.70292457670601
2526
+ - type: euclidean_precision
2527
+ value: 68.79680479281079
2528
+ - type: euclidean_recall
2529
+ value: 72.71767810026385
2530
+ - type: manhattan_accuracy
2531
+ value: 87.11330988853788
2532
+ - type: manhattan_ap
2533
+ value: 77.92527099601855
2534
+ - type: manhattan_f1
2535
+ value: 70.76488706365502
2536
+ - type: manhattan_precision
2537
+ value: 68.89055472263868
2538
+ - type: manhattan_recall
2539
+ value: 72.74406332453826
2540
+ - type: max_accuracy
2541
+ value: 87.26828396018358
2542
+ - type: max_ap
2543
+ value: 78.00158454104036
2544
+ - type: max_f1
2545
+ value: 70.76488706365502
2546
+ - task:
2547
+ type: PairClassification
2548
+ dataset:
2549
+ type: mteb/twitterurlcorpus-pairclassification
2550
+ name: MTEB TwitterURLCorpus
2551
+ config: default
2552
+ split: test
2553
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2554
+ metrics:
2555
+ - type: cos_sim_accuracy
2556
+ value: 87.80804905499282
2557
+ - type: cos_sim_ap
2558
+ value: 83.06187782630936
2559
+ - type: cos_sim_f1
2560
+ value: 74.99716435403985
2561
+ - type: cos_sim_precision
2562
+ value: 73.67951860931579
2563
+ - type: cos_sim_recall
2564
+ value: 76.36279642747151
2565
+ - type: dot_accuracy
2566
+ value: 81.83141227151008
2567
+ - type: dot_ap
2568
+ value: 67.18241090841795
2569
+ - type: dot_f1
2570
+ value: 62.216037571751606
2571
+ - type: dot_precision
2572
+ value: 56.749381227391005
2573
+ - type: dot_recall
2574
+ value: 68.84816753926701
2575
+ - type: euclidean_accuracy
2576
+ value: 87.91671517832887
2577
+ - type: euclidean_ap
2578
+ value: 83.56538942001427
2579
+ - type: euclidean_f1
2580
+ value: 75.7327253337256
2581
+ - type: euclidean_precision
2582
+ value: 72.48856036606828
2583
+ - type: euclidean_recall
2584
+ value: 79.28087465352634
2585
+ - type: manhattan_accuracy
2586
+ value: 87.86626304963713
2587
+ - type: manhattan_ap
2588
+ value: 83.52939841172832
2589
+ - type: manhattan_f1
2590
+ value: 75.73635656329888
2591
+ - type: manhattan_precision
2592
+ value: 72.99150182103836
2593
+ - type: manhattan_recall
2594
+ value: 78.69571912534647
2595
+ - type: max_accuracy
2596
+ value: 87.91671517832887
2597
+ - type: max_ap
2598
+ value: 83.56538942001427
2599
+ - type: max_f1
2600
+ value: 75.73635656329888
2601
+ license: mit
2602
+ language:
2603
+ - en
2604
+ ---
2605
+
2606
+
2607
+ **Recommend switching to newest [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5), which has more reasonable similarity distribution and same method of usage.**
2608
+
2609
+ <h1 align="center">FlagEmbedding</h1>
2610
+
2611
+
2612
+ <h4 align="center">
2613
+ <p>
2614
+ <a href=#model-list>Model List</a> |
2615
+ <a href=#frequently-asked-questions>FAQ</a> |
2616
+ <a href=#usage>Usage</a> |
2617
+ <a href="#evaluation">Evaluation</a> |
2618
+ <a href="#train">Train</a> |
2619
+ <a href="#contact">Contact</a> |
2620
+ <a href="#citation">Citation</a> |
2621
+ <a href="#license">License</a>
2622
+ <p>
2623
+ </h4>
2624
+
2625
+ More details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding).
2626
+
2627
+
2628
+ [English](README.md) | [中文](https://github.com/FlagOpen/FlagEmbedding/blob/master/README_zh.md)
2629
+
2630
+ FlagEmbedding can map any text to a low-dimensional dense vector which can be used for tasks like retrieval, classification, clustering, or semantic search.
2631
+ And it also can be used in vector databases for LLMs.
2632
+
2633
+ ************* 🌟**Updates**🌟 *************
2634
+ - 09/15/2023: Release [paper](https://arxiv.org/pdf/2309.07597.pdf) and [dataset](https://data.baai.ac.cn/details/BAAI-MTP).
2635
+ - 09/12/2023: New Release:
2636
+ - **New reranker model**: release cross-encoder models `BAAI/bge-reranker-base` and `BAAI/bge-reranker-large`, which are more powerful than embedding model. We recommend to use/fine-tune them to re-rank top-k documents returned by embedding models.
2637
+ - **update embedding model**: release `bge-*-v1.5` embedding model to alleviate the issue of the similarity distribution, and enhance its retrieval ability without instruction.
2638
+ - 09/07/2023: Update [fine-tune code](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md): Add script to mine hard negatives and support adding instruction during fine-tuning.
2639
+ - 08/09/2023: BGE Models are integrated into **Langchain**, you can use it like [this](#using-langchain); C-MTEB **leaderboard** is [available](https://huggingface.co/spaces/mteb/leaderboard).
2640
+ - 08/05/2023: Release base-scale and small-scale models, **best performance among the models of the same size 🤗**
2641
+ - 08/02/2023: Release `bge-large-*`(short for BAAI General Embedding) Models, **rank 1st on MTEB and C-MTEB benchmark!** :tada: :tada:
2642
+ - 08/01/2023: We release the [Chinese Massive Text Embedding Benchmark](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB) (**C-MTEB**), consisting of 31 test dataset.
2643
+
2644
+
2645
+ ## Model List
2646
+
2647
+ `bge` is short for `BAAI general embedding`.
2648
+
2649
+ | Model | Language | | Description | query instruction for retrieval\* |
2650
+ |:-------------------------------|:--------:| :--------:| :--------:|:--------:|
2651
+ | [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient \** | |
2652
+ | [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient \** | |
2653
+ | [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
2654
+ | [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
2655
+ | [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
2656
+ | [BAAI/bge-large-zh-v1.5](https://huggingface.co/BAAI/bge-large-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
2657
+ | [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
2658
+ | [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
2659
+ | [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` |
2660
+ | [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-en` | `Represent this sentence for searching relevant passages: ` |
2661
+ | [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) |a small-scale model but with competitive performance | `Represent this sentence for searching relevant passages: ` |
2662
+ | [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | `为这个句子生成表示以用于检索相关文章:` |
2663
+ | [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-zh` | `为这个句子生成表示以用于检索相关文章:` |
2664
+ | [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a small-scale model but with competitive performance | `为这个句子生成表示以用于检索相关文章:` |
2665
+
2666
+
2667
+ \*: If you need to search the relevant passages to a query, we suggest to add the instruction to the query; in other cases, no instruction is needed, just use the original query directly. In all cases, **no instruction** needs to be added to passages.
2668
+
2669
+ \**: Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding. To balance the accuracy and time cost, cross-encoder is widely used to re-rank top-k documents retrieved by other simple models.
2670
+ For examples, use bge embedding model to retrieve top 100 relevant documents, and then use bge reranker to re-rank the top 100 document to get the final top-3 results.
2671
+
2672
+ ## Frequently asked questions
2673
+
2674
+ <details>
2675
+ <summary>1. How to fine-tune bge embedding model?</summary>
2676
+
2677
+ <!-- ### How to fine-tune bge embedding model? -->
2678
+ Following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) to prepare data and fine-tune your model.
2679
+ Some suggestions:
2680
+ - Mine hard negatives following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune#hard-negatives), which can improve the retrieval performance.
2681
+ - If you pre-train bge on your data, the pre-trained model cannot be directly used to calculate similarity, and it must be fine-tuned with contrastive learning before computing similarity.
2682
+ - If the accuracy of the fine-tuned model is still not high, it is recommended to use/fine-tune the cross-encoder model (bge-reranker) to re-rank top-k results. Hard negatives also are needed to fine-tune reranker.
2683
+
2684
+
2685
+ </details>
2686
+
2687
+ <details>
2688
+ <summary>2. The similarity score between two dissimilar sentences is higher than 0.5</summary>
2689
+
2690
+ <!-- ### The similarity score between two dissimilar sentences is higher than 0.5 -->
2691
+ **Suggest to use bge v1.5, which alleviates the issue of the similarity distribution.**
2692
+
2693
+ Since we finetune the models by contrastive learning with a temperature of 0.01,
2694
+ the similarity distribution of the current BGE model is about in the interval \[0.6, 1\].
2695
+ So a similarity score greater than 0.5 does not indicate that the two sentences are similar.
2696
+
2697
+ For downstream tasks, such as passage retrieval or semantic similarity,
2698
+ **what matters is the relative order of the scores, not the absolute value.**
2699
+ If you need to filter similar sentences based on a similarity threshold,
2700
+ please select an appropriate similarity threshold based on the similarity distribution on your data (such as 0.8, 0.85, or even 0.9).
2701
+
2702
+ </details>
2703
+
2704
+ <details>
2705
+ <summary>3. When does the query instruction need to be used</summary>
2706
+
2707
+ <!-- ### When does the query instruction need to be used -->
2708
+
2709
+ For a retrieval task that uses short queries to find long related documents,
2710
+ it is recommended to add instructions for these short queries.
2711
+ **The best method to decide whether to add instructions for queries is choosing the setting that achieves better performance on your task.**
2712
+ In all cases, the documents/passages do not need to add the instruction.
2713
+
2714
+ </details>
2715
+
2716
+
2717
+ ## Usage
2718
+
2719
+ ### Usage for Embedding Model
2720
+
2721
+ Here are some examples for using `bge` models with
2722
+ [FlagEmbedding](#using-flagembedding), [Sentence-Transformers](#using-sentence-transformers), [Langchain](#using-langchain), or [Huggingface Transformers](#using-huggingface-transformers).
2723
+
2724
+ #### Using FlagEmbedding
2725
+ ```
2726
+ pip install -U FlagEmbedding
2727
+ ```
2728
+ If it doesn't work for you, you can see [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md) for more methods to install FlagEmbedding.
2729
+
2730
+ ```python
2731
+ from FlagEmbedding import FlagModel
2732
+ sentences_1 = ["样例数据-1", "样例数据-2"]
2733
+ sentences_2 = ["样例数据-3", "样例数据-4"]
2734
+ model = FlagModel('BAAI/bge-large-zh-v1.5',
2735
+ query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
2736
+ use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
2737
+ embeddings_1 = model.encode(sentences_1)
2738
+ embeddings_2 = model.encode(sentences_2)
2739
+ similarity = embeddings_1 @ embeddings_2.T
2740
+ print(similarity)
2741
+
2742
+ # for s2p(short query to long passage) retrieval task, suggest to use encode_queries() which will automatically add the instruction to each query
2743
+ # corpus in retrieval task can still use encode() or encode_corpus(), since they don't need instruction
2744
+ queries = ['query_1', 'query_2']
2745
+ passages = ["样例文档-1", "样例文档-2"]
2746
+ q_embeddings = model.encode_queries(queries)
2747
+ p_embeddings = model.encode(passages)
2748
+ scores = q_embeddings @ p_embeddings.T
2749
+ ```
2750
+ For the value of the argument `query_instruction_for_retrieval`, see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list).
2751
+
2752
+ By default, FlagModel will use all available GPUs when encoding. Please set `os.environ["CUDA_VISIBLE_DEVICES"]` to select specific GPUs.
2753
+ You also can set `os.environ["CUDA_VISIBLE_DEVICES"]=""` to make all GPUs unavailable.
2754
+
2755
+
2756
+ #### Using Sentence-Transformers
2757
+
2758
+ You can also use the `bge` models with [sentence-transformers](https://www.SBERT.net):
2759
+
2760
+ ```
2761
+ pip install -U sentence-transformers
2762
+ ```
2763
+ ```python
2764
+ from sentence_transformers import SentenceTransformer
2765
+ sentences_1 = ["样例数据-1", "样例数据-2"]
2766
+ sentences_2 = ["样例数据-3", "样例数据-4"]
2767
+ model = SentenceTransformer('BAAI/bge-large-zh-v1.5')
2768
+ embeddings_1 = model.encode(sentences_1, normalize_embeddings=True)
2769
+ embeddings_2 = model.encode(sentences_2, normalize_embeddings=True)
2770
+ similarity = embeddings_1 @ embeddings_2.T
2771
+ print(similarity)
2772
+ ```
2773
+ For s2p(short query to long passage) retrieval task,
2774
+ each short query should start with an instruction (instructions see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list)).
2775
+ But the instruction is not needed for passages.
2776
+ ```python
2777
+ from sentence_transformers import SentenceTransformer
2778
+ queries = ['query_1', 'query_2']
2779
+ passages = ["样例文档-1", "样例文档-2"]
2780
+ instruction = "为这个句子生成表示以用于检索相关文章:"
2781
+
2782
+ model = SentenceTransformer('BAAI/bge-large-zh-v1.5')
2783
+ q_embeddings = model.encode([instruction+q for q in queries], normalize_embeddings=True)
2784
+ p_embeddings = model.encode(passages, normalize_embeddings=True)
2785
+ scores = q_embeddings @ p_embeddings.T
2786
+ ```
2787
+
2788
+ #### Using Langchain
2789
+
2790
+ You can use `bge` in langchain like this:
2791
+ ```python
2792
+ from langchain.embeddings import HuggingFaceBgeEmbeddings
2793
+ model_name = "BAAI/bge-large-en-v1.5"
2794
+ model_kwargs = {'device': 'cuda'}
2795
+ encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity
2796
+ model = HuggingFaceBgeEmbeddings(
2797
+ model_name=model_name,
2798
+ model_kwargs=model_kwargs,
2799
+ encode_kwargs=encode_kwargs,
2800
+ query_instruction="为这个句子生成表示以用于检索相关文章:"
2801
+ )
2802
+ model.query_instruction = "为这个句子生成表示以用于检索相关文章:"
2803
+ ```
2804
+
2805
+
2806
+ #### Using HuggingFace Transformers
2807
+
2808
+ With the transformers package, you can use the model like this: First, you pass your input through the transformer model, then you select the last hidden state of the first token (i.e., [CLS]) as the sentence embedding.
2809
+
2810
+ ```python
2811
+ from transformers import AutoTokenizer, AutoModel
2812
+ import torch
2813
+ # Sentences we want sentence embeddings for
2814
+ sentences = ["样例数据-1", "样例数据-2"]
2815
+
2816
+ # Load model from HuggingFace Hub
2817
+ tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-large-zh-v1.5')
2818
+ model = AutoModel.from_pretrained('BAAI/bge-large-zh-v1.5')
2819
+ model.eval()
2820
+
2821
+ # Tokenize sentences
2822
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
2823
+ # for s2p(short query to long passage) retrieval task, add an instruction to query (not add instruction for passages)
2824
+ # encoded_input = tokenizer([instruction + q for q in queries], padding=True, truncation=True, return_tensors='pt')
2825
+
2826
+ # Compute token embeddings
2827
+ with torch.no_grad():
2828
+ model_output = model(**encoded_input)
2829
+ # Perform pooling. In this case, cls pooling.
2830
+ sentence_embeddings = model_output[0][:, 0]
2831
+ # normalize embeddings
2832
+ sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1)
2833
+ print("Sentence embeddings:", sentence_embeddings)
2834
+ ```
2835
+
2836
+ ### Usage for Reranker
2837
+
2838
+ Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding.
2839
+ You can get a relevance score by inputting query and passage to the reranker.
2840
+ The reranker is optimized based cross-entropy loss, so the relevance score is not bounded to a specific range.
2841
+
2842
+
2843
+ #### Using FlagEmbedding
2844
+ ```
2845
+ pip install -U FlagEmbedding
2846
+ ```
2847
+
2848
+ Get relevance scores (higher scores indicate more relevance):
2849
+ ```python
2850
+ from FlagEmbedding import FlagReranker
2851
+ reranker = FlagReranker('BAAI/bge-reranker-large', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
2852
+
2853
+ score = reranker.compute_score(['query', 'passage'])
2854
+ print(score)
2855
+
2856
+ scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']])
2857
+ print(scores)
2858
+ ```
2859
+
2860
+
2861
+ #### Using Huggingface transformers
2862
+
2863
+ ```python
2864
+ import torch
2865
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
2866
+
2867
+ tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-large')
2868
+ model = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-large')
2869
+ model.eval()
2870
+
2871
+ pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
2872
+ with torch.no_grad():
2873
+ inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512)
2874
+ scores = model(**inputs, return_dict=True).logits.view(-1, ).float()
2875
+ print(scores)
2876
+ ```
2877
+
2878
+ ## Evaluation
2879
+
2880
+ `baai-general-embedding` models achieve **state-of-the-art performance on both MTEB and C-MTEB leaderboard!**
2881
+ For more details and evaluation tools see our [scripts](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md).
2882
+
2883
+ - **MTEB**:
2884
+
2885
+ | Model Name | Dimension | Sequence Length | Average (56) | Retrieval (15) |Clustering (11) | Pair Classification (3) | Reranking (4) | STS (10) | Summarization (1) | Classification (12) |
2886
+ |:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
2887
+ | [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 1024 | 512 | **64.23** | **54.29** | 46.08 | 87.12 | 60.03 | 83.11 | 31.61 | 75.97 |
2888
+ | [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | 768 | 512 | 63.55 | 53.25 | 45.77 | 86.55 | 58.86 | 82.4 | 31.07 | 75.53 |
2889
+ | [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | 384 | 512 | 62.17 |51.68 | 43.82 | 84.92 | 58.36 | 81.59 | 30.12 | 74.14 |
2890
+ | [bge-large-en](https://huggingface.co/BAAI/bge-large-en) | 1024 | 512 | 63.98 | 53.9 | 46.98 | 85.8 | 59.48 | 81.56 | 32.06 | 76.21 |
2891
+ | [bge-base-en](https://huggingface.co/BAAI/bge-base-en) | 768 | 512 | 63.36 | 53.0 | 46.32 | 85.86 | 58.7 | 81.84 | 29.27 | 75.27 |
2892
+ | [gte-large](https://huggingface.co/thenlper/gte-large) | 1024 | 512 | 63.13 | 52.22 | 46.84 | 85.00 | 59.13 | 83.35 | 31.66 | 73.33 |
2893
+ | [gte-base](https://huggingface.co/thenlper/gte-base) | 768 | 512 | 62.39 | 51.14 | 46.2 | 84.57 | 58.61 | 82.3 | 31.17 | 73.01 |
2894
+ | [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) | 1024| 512 | 62.25 | 50.56 | 44.49 | 86.03 | 56.61 | 82.05 | 30.19 | 75.24 |
2895
+ | [bge-small-en](https://huggingface.co/BAAI/bge-small-en) | 384 | 512 | 62.11 | 51.82 | 44.31 | 83.78 | 57.97 | 80.72 | 30.53 | 74.37 |
2896
+ | [instructor-xl](https://huggingface.co/hkunlp/instructor-xl) | 768 | 512 | 61.79 | 49.26 | 44.74 | 86.62 | 57.29 | 83.06 | 32.32 | 61.79 |
2897
+ | [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) | 768 | 512 | 61.5 | 50.29 | 43.80 | 85.73 | 55.91 | 81.05 | 30.28 | 73.84 |
2898
+ | [gte-small](https://huggingface.co/thenlper/gte-small) | 384 | 512 | 61.36 | 49.46 | 44.89 | 83.54 | 57.7 | 82.07 | 30.42 | 72.31 |
2899
+ | [text-embedding-ada-002](https://platform.openai.com/docs/guides/embeddings) | 1536 | 8192 | 60.99 | 49.25 | 45.9 | 84.89 | 56.32 | 80.97 | 30.8 | 70.93 |
2900
+ | [e5-small-v2](https://huggingface.co/intfloat/e5-base-v2) | 384 | 512 | 59.93 | 49.04 | 39.92 | 84.67 | 54.32 | 80.39 | 31.16 | 72.94 |
2901
+ | [sentence-t5-xxl](https://huggingface.co/sentence-transformers/sentence-t5-xxl) | 768 | 512 | 59.51 | 42.24 | 43.72 | 85.06 | 56.42 | 82.63 | 30.08 | 73.42 |
2902
+ | [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 768 | 514 | 57.78 | 43.81 | 43.69 | 83.04 | 59.36 | 80.28 | 27.49 | 65.07 |
2903
+ | [sgpt-bloom-7b1-msmarco](https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco) | 4096 | 2048 | 57.59 | 48.22 | 38.93 | 81.9 | 55.65 | 77.74 | 33.6 | 66.19 |
2904
+
2905
+
2906
+
2907
+ - **C-MTEB**:
2908
+ We create the benchmark C-MTEB for Chinese text embedding which consists of 31 datasets from 6 tasks.
2909
+ Please refer to [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md) for a detailed introduction.
2910
+
2911
+ | Model | Embedding dimension | Avg | Retrieval | STS | PairClassification | Classification | Reranking | Clustering |
2912
+ |:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
2913
+ | [**BAAI/bge-large-zh-v1.5**](https://huggingface.co/BAAI/bge-large-zh-v1.5) | 1024 | **64.53** | 70.46 | 56.25 | 81.6 | 69.13 | 65.84 | 48.99 |
2914
+ | [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | 768 | 63.13 | 69.49 | 53.72 | 79.75 | 68.07 | 65.39 | 47.53 |
2915
+ | [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | 512 | 57.82 | 61.77 | 49.11 | 70.41 | 63.96 | 60.92 | 44.18 |
2916
+ | [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | 1024 | 64.20 | 71.53 | 54.98 | 78.94 | 68.32 | 65.11 | 48.39 |
2917
+ | [bge-large-zh-noinstruct](https://huggingface.co/BAAI/bge-large-zh-noinstruct) | 1024 | 63.53 | 70.55 | 53 | 76.77 | 68.58 | 64.91 | 50.01 |
2918
+ | [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | 768 | 62.96 | 69.53 | 54.12 | 77.5 | 67.07 | 64.91 | 47.63 |
2919
+ | [multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 1024 | 58.79 | 63.66 | 48.44 | 69.89 | 67.34 | 56.00 | 48.23 |
2920
+ | [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | 512 | 58.27 | 63.07 | 49.45 | 70.35 | 63.64 | 61.48 | 45.09 |
2921
+ | [m3e-base](https://huggingface.co/moka-ai/m3e-base) | 768 | 57.10 | 56.91 | 50.47 | 63.99 | 67.52 | 59.34 | 47.68 |
2922
+ | [m3e-large](https://huggingface.co/moka-ai/m3e-large) | 1024 | 57.05 | 54.75 | 50.42 | 64.3 | 68.2 | 59.66 | 48.88 |
2923
+ | [multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) | 768 | 55.48 | 61.63 | 46.49 | 67.07 | 65.35 | 54.35 | 40.68 |
2924
+ | [multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) | 384 | 55.38 | 59.95 | 45.27 | 66.45 | 65.85 | 53.86 | 45.26 |
2925
+ | [text-embedding-ada-002(OpenAI)](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings) | 1536 | 53.02 | 52.0 | 43.35 | 69.56 | 64.31 | 54.28 | 45.68 |
2926
+ | [luotuo](https://huggingface.co/silk-road/luotuo-bert-medium) | 1024 | 49.37 | 44.4 | 42.78 | 66.62 | 61 | 49.25 | 44.39 |
2927
+ | [text2vec-base](https://huggingface.co/shibing624/text2vec-base-chinese) | 768 | 47.63 | 38.79 | 43.41 | 67.41 | 62.19 | 49.45 | 37.66 |
2928
+ | [text2vec-large](https://huggingface.co/GanymedeNil/text2vec-large-chinese) | 1024 | 47.36 | 41.94 | 44.97 | 70.86 | 60.66 | 49.16 | 30.02 |
2929
+
2930
+
2931
+ - **Reranking**:
2932
+ See [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/) for evaluation script.
2933
+
2934
+ | Model | T2Reranking | T2RerankingZh2En\* | T2RerankingEn2Zh\* | MMarcoReranking | CMedQAv1 | CMedQAv2 | Avg |
2935
+ |:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
2936
+ | text2vec-base-multilingual | 64.66 | 62.94 | 62.51 | 14.37 | 48.46 | 48.6 | 50.26 |
2937
+ | multilingual-e5-small | 65.62 | 60.94 | 56.41 | 29.91 | 67.26 | 66.54 | 57.78 |
2938
+ | multilingual-e5-large | 64.55 | 61.61 | 54.28 | 28.6 | 67.42 | 67.92 | 57.4 |
2939
+ | multilingual-e5-base | 64.21 | 62.13 | 54.68 | 29.5 | 66.23 | 66.98 | 57.29 |
2940
+ | m3e-base | 66.03 | 62.74 | 56.07 | 17.51 | 77.05 | 76.76 | 59.36 |
2941
+ | m3e-large | 66.13 | 62.72 | 56.1 | 16.46 | 77.76 | 78.27 | 59.57 |
2942
+ | bge-base-zh-v1.5 | 66.49 | 63.25 | 57.02 | 29.74 | 80.47 | 84.88 | 63.64 |
2943
+ | bge-large-zh-v1.5 | 65.74 | 63.39 | 57.03 | 28.74 | 83.45 | 85.44 | 63.97 |
2944
+ | [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | 67.28 | 63.95 | 60.45 | 35.46 | 81.26 | 84.1 | 65.42 |
2945
+ | [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | 67.6 | 64.03 | 61.44 | 37.16 | 82.15 | 84.18 | 66.09 |
2946
+
2947
+ \* : T2RerankingZh2En and T2RerankingEn2Zh are cross-language retrieval tasks
2948
+
2949
+ ## Train
2950
+
2951
+ ### BAAI Embedding
2952
+
2953
+ We pre-train the models using [retromae](https://github.com/staoxiao/RetroMAE) and train them on large-scale pairs data using contrastive learning.
2954
+ **You can fine-tune the embedding model on your data following our [examples](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune).**
2955
+ We also provide a [pre-train example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/pretrain).
2956
+ Note that the goal of pre-training is to reconstruct the text, and the pre-trained model cannot be used for similarity calculation directly, it needs to be fine-tuned.
2957
+ More training details for bge see [baai_general_embedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md).
2958
+
2959
+
2960
+
2961
+ ### BGE Reranker
2962
+
2963
+ Cross-encoder will perform full-attention over the input pair,
2964
+ which is more accurate than embedding model (i.e., bi-encoder) but more time-consuming than embedding model.
2965
+ Therefore, it can be used to re-rank the top-k documents returned by embedding model.
2966
+ We train the cross-encoder on a multilingual pair data,
2967
+ The data format is the same as embedding model, so you can fine-tune it easily following our [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker).
2968
+ More details pelease refer to [./FlagEmbedding/reranker/README.md](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker)
2969
+
2970
+
2971
+ ## Contact
2972
+ If you have any question or suggestion related to this project, feel free to open an issue or pull request.
2973
+ You also can email Shitao Xiao([email protected]) and Zheng Liu([email protected]).
2974
+
2975
+
2976
+ ## Citation
2977
+
2978
+ If you find our work helpful, please cite us:
2979
+ ```
2980
+ @misc{bge_embedding,
2981
+ title={C-Pack: Packaged Resources To Advance General Chinese Embedding},
2982
+ author={Shitao Xiao and Zheng Liu and Peitian Zhang and Niklas Muennighoff},
2983
+ year={2023},
2984
+ eprint={2309.07597},
2985
+ archivePrefix={arXiv},
2986
+ primaryClass={cs.CL}
2987
+ }
2988
+ ```
2989
+
2990
+ ## License
2991
+ FlagEmbedding is licensed under the [MIT License](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE). The released models can be used for commercial purposes free of charge.
2992
+
2993
+
2994
+
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 1024,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 4096,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 16,
24
+ "num_hidden_layers": 24,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.28.1",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.28.1",
5
+ "pytorch": "1.13.0+cu117"
6
+ }
7
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37136ad03a0da3ea220bc31850c5b49f39d56fa0d99ebd48887d0c9bb60ad5d1
3
+ size 1340616616
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ccd0ac7807e3ebe6a00c9bf11ac6cdd9a475bab954e8a86b90adcb4372c624d
3
+ size 1340698349
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "clean_up_tokenization_spaces": true,
3
+ "cls_token": "[CLS]",
4
+ "do_basic_tokenize": true,
5
+ "do_lower_case": true,
6
+ "mask_token": "[MASK]",
7
+ "model_max_length": 512,
8
+ "never_split": null,
9
+ "pad_token": "[PAD]",
10
+ "sep_token": "[SEP]",
11
+ "strip_accents": null,
12
+ "tokenize_chinese_chars": true,
13
+ "tokenizer_class": "BertTokenizer",
14
+ "unk_token": "[UNK]"
15
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff