mprzymus commited on
Commit
814f3ad
·
1 Parent(s): bd8c601

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +7 -7
README.md CHANGED
@@ -20,7 +20,7 @@ widget:
20
 
21
  # Twitter emotion PL (base)
22
 
23
- Twitter emotion PL (base) is a model based on [herbert-base](https://huggingface.co/allegro/herbert-base-cased) for analyzing emotion of Polish twitter posts. It was trained on the translated version of [TweetEval](https://www.researchgate.net/publication/347233661_TweetEval_Unified_Benchmark_and_Comparative_Evaluation_for_Tweet_Classification) by Barbieri et al., 2020 for 10 epochs on single RTX3090 gpu.
24
 
25
  The model will give you a three labels: positive, negative and neutral.
26
 
@@ -35,17 +35,17 @@ nlp = pipeline("text-classification", model="bardsai/twitter-emotion-pl-base")
35
  nlp("Nigdy przegrana nie sprawiła mi takiej radości. Szczęście i Opatrzność mają znaczenie Gratuluje @pzpn_pl")
36
  ```
37
  ```bash
38
- [{'label': 'joy', 'score': 0.5163766145706177}]
39
  ```
40
 
41
  ## Performance
42
  | Metric | Value |
43
  | --- | ----------- |
44
- | f1 macro | 0.756 |
45
- | precision macro | 0.767 |
46
- | recall macro | 0.750 |
47
- | accuracy | 0.789 |
48
- | samples per second | 131.6 |
49
 
50
  (The performance was evaluated on RTX 3090 gpu)
51
 
 
20
 
21
  # Twitter emotion PL (base)
22
 
23
+ Twitter emotion PL (base) is a model based on [distiluse](https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v1) for analyzing emotion of Polish twitter posts. It was trained on the translated version of [TweetEval](https://www.researchgate.net/publication/347233661_TweetEval_Unified_Benchmark_and_Comparative_Evaluation_for_Tweet_Classification) by Barbieri et al., 2020 for 10 epochs on single RTX3090 gpu.
24
 
25
  The model will give you a three labels: positive, negative and neutral.
26
 
 
35
  nlp("Nigdy przegrana nie sprawiła mi takiej radości. Szczęście i Opatrzność mają znaczenie Gratuluje @pzpn_pl")
36
  ```
37
  ```bash
38
+ [{'label': 'joy', 'score': 0.7068771123886108}]
39
  ```
40
 
41
  ## Performance
42
  | Metric | Value |
43
  | --- | ----------- |
44
+ | f1 macro | 0.692 |
45
+ | precision macro | 0.700 |
46
+ | recall macro | 687 |
47
+ | accuracy | 0.737 |
48
+ | samples per second | 255.2 |
49
 
50
  (The performance was evaluated on RTX 3090 gpu)
51