Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -20,7 +20,7 @@ widget:
|
|
20 |
|
21 |
# Twitter emotion PL (base)
|
22 |
|
23 |
-
Twitter emotion PL (base) is a model based on [
|
24 |
|
25 |
The model will give you a three labels: positive, negative and neutral.
|
26 |
|
@@ -35,17 +35,17 @@ nlp = pipeline("text-classification", model="bardsai/twitter-emotion-pl-base")
|
|
35 |
nlp("Nigdy przegrana nie sprawiła mi takiej radości. Szczęście i Opatrzność mają znaczenie Gratuluje @pzpn_pl")
|
36 |
```
|
37 |
```bash
|
38 |
-
[{'label': 'joy', 'score': 0.
|
39 |
```
|
40 |
|
41 |
## Performance
|
42 |
| Metric | Value |
|
43 |
| --- | ----------- |
|
44 |
-
| f1 macro | 0.
|
45 |
-
| precision macro | 0.
|
46 |
-
| recall macro |
|
47 |
-
| accuracy | 0.
|
48 |
-
| samples per second |
|
49 |
|
50 |
(The performance was evaluated on RTX 3090 gpu)
|
51 |
|
|
|
20 |
|
21 |
# Twitter emotion PL (base)
|
22 |
|
23 |
+
Twitter emotion PL (base) is a model based on [distiluse](https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v1) for analyzing emotion of Polish twitter posts. It was trained on the translated version of [TweetEval](https://www.researchgate.net/publication/347233661_TweetEval_Unified_Benchmark_and_Comparative_Evaluation_for_Tweet_Classification) by Barbieri et al., 2020 for 10 epochs on single RTX3090 gpu.
|
24 |
|
25 |
The model will give you a three labels: positive, negative and neutral.
|
26 |
|
|
|
35 |
nlp("Nigdy przegrana nie sprawiła mi takiej radości. Szczęście i Opatrzność mają znaczenie Gratuluje @pzpn_pl")
|
36 |
```
|
37 |
```bash
|
38 |
+
[{'label': 'joy', 'score': 0.7068771123886108}]
|
39 |
```
|
40 |
|
41 |
## Performance
|
42 |
| Metric | Value |
|
43 |
| --- | ----------- |
|
44 |
+
| f1 macro | 0.692 |
|
45 |
+
| precision macro | 0.700 |
|
46 |
+
| recall macro | 687 |
|
47 |
+
| accuracy | 0.737 |
|
48 |
+
| samples per second | 255.2 |
|
49 |
|
50 |
(The performance was evaluated on RTX 3090 gpu)
|
51 |
|