barbaroo commited on
Commit
b413427
·
verified ·
1 Parent(s): df5b7cb

Upload 11 files

Browse files
Files changed (6) hide show
  1. README.md +143 -132
  2. adapter_model.safetensors +1 -1
  3. optimizer.pt +1 -1
  4. rng_state.pth +1 -1
  5. scheduler.pt +1 -1
  6. trainer_state.json +1258 -4
README.md CHANGED
@@ -1,191 +1,202 @@
1
  ---
2
  base_model: AI-Sweden-Models/gpt-sw3-1.3b
3
  library_name: peft
4
- datasets:
5
- - barbaroo/Sprotin_parallel
6
- language:
7
- - en
8
- - fo
9
- metrics:
10
- - bleu
11
- - chrf
12
- - bertscore
13
- pipeline_tag: text-generation
14
  ---
15
 
16
- Model Card: English–Faroese Translation Adapter
 
 
 
 
17
 
18
  ## Model Details
19
 
20
- **Model Description**
21
 
22
- - **Developed by:** Barbara Scalvini
23
- - **Model type:** Language model adapter for **English → Faroese** translation
24
- - **Language(s):** English, Faroese
25
- - **License:** This adapter inherits the license from the original GPT-SW3 1.3 B model.
26
- - **Finetuned from model:** [AI-Sweden-Models/gpt-sw3-1.3b](https://huggingface.co/AI-Sweden-Models/gpt-sw3-1.3b)
27
- - **Library used:** [PEFT 0.13.0](https://github.com/huggingface/peft)
28
 
29
- ### Model Sources
30
 
31
- - **Paper:** [COMING SOON]
32
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
 
34
  ## Uses
35
 
 
 
36
  ### Direct Use
37
- This adapter is intended to perform **English→Faroese** translation, leveraging a **parameter-efficient fine-tuning** (PEFT) approach.
 
 
 
38
 
39
  ### Downstream Use [optional]
40
- - Can be integrated into broader **multilingual** or **localization** workflows.
41
 
 
 
 
42
 
43
  ### Out-of-Scope Use
44
- - Any uses that rely on languages other than **English or Faroese** will likely yield suboptimal results.
45
- - Other tasks (e.g., summarization, classification) may be unsupported or require further fine-tuning.
46
 
47
- ---
 
 
48
 
49
  ## Bias, Risks, and Limitations
50
- - **Biases:** The model could reflect **biases** present in the training data, such as historical or societal biases in English or Faroese texts.
51
- - **Recommendation:** Users should **critically evaluate** outputs, especially in sensitive or high-stakes applications.
52
 
53
- ---
 
 
 
 
 
 
 
 
54
 
55
  ## How to Get Started with the Model
56
 
57
- ```python
58
- import torch
59
- from peft import AutoPeftModelForCausalLM
60
- from transformers import AutoTokenizer
61
- import pandas as pd
62
-
63
- ADAPTER_REPO = "barbaroo/gptsw3_translate_1.3B"
64
- BASE_MODEL = "AI-Sweden-Models/gpt-sw3-1.3b"
65
-
66
- # 1. Load the tokenizer from the base model
67
- tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
68
-
69
- model = AutoPeftModelForCausalLM.from_pretrained(
70
- ADAPTER_REPO,
71
- load_in_8bit=True, # Optional: 8-bit quantization for GPU memory efficiency
72
- device_map="auto", # Automatically spread layers across available GPUs
73
- )
74
-
75
- # Ensure the model is in evaluation mode
76
- model.eval()
77
-
78
- # Alpaca-style prompt template
79
- alpaca_prompt = """
80
- ### Instruction:
81
- {}
82
-
83
- ### Input:
84
- {}
85
-
86
- ### Response:
87
- {}
88
- """
89
-
90
- # EOS token from the tokenizer
91
- EOS_TOKEN = tokenizer.eos_token
92
- print(EOS_TOKEN)
93
-
94
- sentences = ['hello world']
95
-
96
- translations = []
97
-
98
- for sentence in sentences:
99
- # Tokenize the input sentence and prepare the prompt for each sentence
100
- inputs = tokenizer(
101
- [
102
- alpaca_prompt.format(
103
- "Translate this sentence from English to Faroese:", # instruction
104
- sentence, # input sentence to translate
105
- "", # output - leave blank for generation
106
- )
107
- ],
108
- return_tensors="pt"
109
- ).to("cuda")
110
-
111
- # Generate the output
112
- outputs = model.generate(**inputs,
113
- max_new_tokens=2000,
114
- eos_token_id=tokenizer.eos_token_id, # Ensure EOS token is used
115
- pad_token_id=tokenizer.pad_token_id, # Ensure padding token is used
116
- use_cache=True,
117
- do_sample = True,
118
- temperature = 0.1,
119
- top_p=1)
120
-
121
- # Decode the generated tokens into a string
122
- output_string = tokenizer.batch_decode(outputs, skip_special_tokens=False)[0]
123
- #print(output_string)
124
-
125
- # Use a regular expression to extract the response part
126
- try:
127
- spl_word_1 = 'Response:\n'
128
- res = output_string.split(spl_word_1, 1)
129
- response = res[1]
130
- translation = response.replace(EOS_TOKEN, '')
131
- translations.append(translation)
132
-
133
- except:
134
- translation = ''
135
- translations.append(translation)
136
-
137
-
138
-
139
- print(translation)
140
- ```
141
 
 
142
 
143
  ## Training Details
144
 
145
  ### Training Data
146
 
147
- We used the Sprotin parallel corpus for **English–Faroese** translation: [barbaroo/Sprotin_parallel](https://huggingface.co/datasets/barbaroo/Sprotin_parallel).
148
 
 
149
 
150
  ### Training Procedure
151
 
 
 
152
  #### Preprocessing [optional]
153
 
154
- - **Tokenization**: We used the tokenizer from the base model `AI-Sweden-Models/gpt-sw3-1.3b`.
155
- - The Alpaca prompt format was used, with Instruction, Input and Response.
156
 
157
  #### Training Hyperparameters
158
-
159
- - **Epochs**: **3** total, with an **early stopping** criterion monitoring validation loss.
160
- - **Batch Size**: **2, with 4 Gradient accumulation steps**
161
- - **Learning Rate**: **2e-4**
162
- - **Optimizer**: **AdamW** with a linear learning-rate scheduler and warm-up.
163
 
164
- ---
 
 
 
 
 
 
165
 
166
  ## Evaluation
167
 
 
 
168
  ### Testing Data, Factors & Metrics
169
 
170
  #### Testing Data
171
 
172
- - The model was evaluated on the **[FLORES-200]** benchmark, of ~1012 English–Faroese pairs.
173
 
 
174
 
175
- #### Metrics and Results
176
 
177
- - **BLEU**: **[0.179]**
178
- - **chrF**: **[49.2]**
179
- - **BERTScore f1**: **[0.947]**
180
 
181
- Human evaluation was also performed (see paper)
182
 
 
183
 
184
- ## Citation []
185
 
186
- [COMING SOON]
187
 
188
- ---
189
- ## Framework versions
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
190
 
191
  - PEFT 0.13.0
 
1
  ---
2
  base_model: AI-Sweden-Models/gpt-sw3-1.3b
3
  library_name: peft
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
 
12
  ## Model Details
13
 
14
+ ### Model Description
15
 
16
+ <!-- Provide a longer summary of what this model is. -->
 
 
 
 
 
17
 
 
18
 
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
  ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
 
46
  ### Downstream Use [optional]
 
47
 
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
 
52
  ### Out-of-Scope Use
 
 
53
 
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
 
58
  ## Bias, Risks, and Limitations
 
 
59
 
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
+ Use the code below to get started with the model.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73
 
74
+ [More Information Needed]
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
 
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
 
82
+ [More Information Needed]
83
 
84
  ### Training Procedure
85
 
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
  #### Preprocessing [optional]
89
 
90
+ [More Information Needed]
91
+
92
 
93
  #### Training Hyperparameters
 
 
 
 
 
94
 
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
 
103
  ## Evaluation
104
 
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
  ### Testing Data, Factors & Metrics
108
 
109
  #### Testing Data
110
 
111
+ <!-- This should link to a Dataset Card if possible. -->
112
 
113
+ [More Information Needed]
114
 
115
+ #### Factors
116
 
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
 
 
118
 
119
+ [More Information Needed]
120
 
121
+ #### Metrics
122
 
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
 
125
+ [More Information Needed]
126
 
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
 
202
  - PEFT 0.13.0
adapter_model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:de1caa6850c60dde06ed5ba525a15305daa92ecae1264f6ea2a7955e10e66f4c
3
  size 50356480
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5783e5a184d9b8f7023f3e4db8b2b04f27f841ebb6e0fdfa51a0d01da07a1a6d
3
  size 50356480
optimizer.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:dd2f2a7491fe026843301e19c59b7a4aa4c309e973865e79ff7b9c93f8ab13ae
3
  size 100824826
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:63cdf40aeb5a038f7bd421d20503a1f69af9749eeddba3ea151aebd2b531031e
3
  size 100824826
rng_state.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:27c9f56f6195874d134c92b9584849d1a90b16a5ff7e21402adab52261329bd3
3
  size 14244
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:880214e1352dcb7ff1a0ff190ed5280bbc6048dfcec536cb051dc547e5cda625
3
  size 14244
scheduler.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:df01d12cec1e66f7820c7396dd8d1cdd7f854f6862f035d388773f67e48e3f94
3
  size 1064
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b3b726a4e5e68c38498cce3fc014e09726f8c59aa78874af5f176e1c33a9024a
3
  size 1064
trainer_state.json CHANGED
@@ -1,9 +1,9 @@
1
  {
2
  "best_metric": null,
3
  "best_model_checkpoint": null,
4
- "epoch": 1.9676393598144797,
5
  "eval_steps": 500,
6
- "global_step": 28000,
7
  "is_hyper_param_search": false,
8
  "is_local_process_zero": true,
9
  "is_world_process_zero": true,
@@ -2415,6 +2415,1260 @@
2415
  "eval_samples_per_second": 106.259,
2416
  "eval_steps_per_second": 13.29,
2417
  "step": 28000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2418
  }
2419
  ],
2420
  "logging_steps": 100,
@@ -2429,12 +3683,12 @@
2429
  "should_evaluate": false,
2430
  "should_log": false,
2431
  "should_save": true,
2432
- "should_training_stop": false
2433
  },
2434
  "attributes": {}
2435
  }
2436
  },
2437
- "total_flos": 9.547282008374477e+16,
2438
  "train_batch_size": 2,
2439
  "trial_name": null,
2440
  "trial_params": null
 
1
  {
2
  "best_metric": null,
3
  "best_model_checkpoint": null,
4
+ "epoch": 2.999947295374291,
5
  "eval_steps": 500,
6
+ "global_step": 42690,
7
  "is_hyper_param_search": false,
8
  "is_local_process_zero": true,
9
  "is_world_process_zero": true,
 
2415
  "eval_samples_per_second": 106.259,
2416
  "eval_steps_per_second": 13.29,
2417
  "step": 28000
2418
+ },
2419
+ {
2420
+ "epoch": 1.9746666432423887,
2421
+ "grad_norm": 0.7954403162002563,
2422
+ "learning_rate": 6.836125102495022e-05,
2423
+ "loss": 0.5698,
2424
+ "step": 28100
2425
+ },
2426
+ {
2427
+ "epoch": 1.9816939266702973,
2428
+ "grad_norm": 0.4845888316631317,
2429
+ "learning_rate": 6.789270235445707e-05,
2430
+ "loss": 0.5677,
2431
+ "step": 28200
2432
+ },
2433
+ {
2434
+ "epoch": 1.9887212100982063,
2435
+ "grad_norm": 0.7075939774513245,
2436
+ "learning_rate": 6.742415368396392e-05,
2437
+ "loss": 0.5736,
2438
+ "step": 28300
2439
+ },
2440
+ {
2441
+ "epoch": 1.9957484935261152,
2442
+ "grad_norm": 0.6423342823982239,
2443
+ "learning_rate": 6.695560501347079e-05,
2444
+ "loss": 0.5824,
2445
+ "step": 28400
2446
+ },
2447
+ {
2448
+ "epoch": 2.002775776954024,
2449
+ "grad_norm": 0.49882400035858154,
2450
+ "learning_rate": 6.648705634297762e-05,
2451
+ "loss": 0.5598,
2452
+ "step": 28500
2453
+ },
2454
+ {
2455
+ "epoch": 2.002775776954024,
2456
+ "eval_loss": 0.6018995642662048,
2457
+ "eval_runtime": 118.7564,
2458
+ "eval_samples_per_second": 106.512,
2459
+ "eval_steps_per_second": 13.321,
2460
+ "step": 28500
2461
+ },
2462
+ {
2463
+ "epoch": 2.009803060381933,
2464
+ "grad_norm": 0.6685127019882202,
2465
+ "learning_rate": 6.601850767248449e-05,
2466
+ "loss": 0.5498,
2467
+ "step": 28600
2468
+ },
2469
+ {
2470
+ "epoch": 2.0168303438098416,
2471
+ "grad_norm": 0.7776573896408081,
2472
+ "learning_rate": 6.554995900199134e-05,
2473
+ "loss": 0.541,
2474
+ "step": 28700
2475
+ },
2476
+ {
2477
+ "epoch": 2.0238576272377506,
2478
+ "grad_norm": 0.9224827885627747,
2479
+ "learning_rate": 6.508141033149819e-05,
2480
+ "loss": 0.5404,
2481
+ "step": 28800
2482
+ },
2483
+ {
2484
+ "epoch": 2.0308849106656592,
2485
+ "grad_norm": 0.6114927530288696,
2486
+ "learning_rate": 6.461286166100504e-05,
2487
+ "loss": 0.541,
2488
+ "step": 28900
2489
+ },
2490
+ {
2491
+ "epoch": 2.0379121940935683,
2492
+ "grad_norm": 0.6814767718315125,
2493
+ "learning_rate": 6.414431299051189e-05,
2494
+ "loss": 0.5397,
2495
+ "step": 29000
2496
+ },
2497
+ {
2498
+ "epoch": 2.0379121940935683,
2499
+ "eval_loss": 0.6046204566955566,
2500
+ "eval_runtime": 118.9324,
2501
+ "eval_samples_per_second": 106.355,
2502
+ "eval_steps_per_second": 13.302,
2503
+ "step": 29000
2504
+ },
2505
+ {
2506
+ "epoch": 2.0449394775214773,
2507
+ "grad_norm": 0.8734195232391357,
2508
+ "learning_rate": 6.367576432001875e-05,
2509
+ "loss": 0.5347,
2510
+ "step": 29100
2511
+ },
2512
+ {
2513
+ "epoch": 2.051966760949386,
2514
+ "grad_norm": 0.7100592255592346,
2515
+ "learning_rate": 6.32072156495256e-05,
2516
+ "loss": 0.5349,
2517
+ "step": 29200
2518
+ },
2519
+ {
2520
+ "epoch": 2.058994044377295,
2521
+ "grad_norm": 0.5094404816627502,
2522
+ "learning_rate": 6.273866697903245e-05,
2523
+ "loss": 0.5438,
2524
+ "step": 29300
2525
+ },
2526
+ {
2527
+ "epoch": 2.0660213278052035,
2528
+ "grad_norm": 0.5938568711280823,
2529
+ "learning_rate": 6.22701183085393e-05,
2530
+ "loss": 0.5367,
2531
+ "step": 29400
2532
+ },
2533
+ {
2534
+ "epoch": 2.0730486112331126,
2535
+ "grad_norm": 0.6052954196929932,
2536
+ "learning_rate": 6.180156963804615e-05,
2537
+ "loss": 0.533,
2538
+ "step": 29500
2539
+ },
2540
+ {
2541
+ "epoch": 2.0730486112331126,
2542
+ "eval_loss": 0.6042247414588928,
2543
+ "eval_runtime": 119.3016,
2544
+ "eval_samples_per_second": 106.025,
2545
+ "eval_steps_per_second": 13.261,
2546
+ "step": 29500
2547
+ },
2548
+ {
2549
+ "epoch": 2.0800758946610216,
2550
+ "grad_norm": 0.8204342126846313,
2551
+ "learning_rate": 6.133302096755302e-05,
2552
+ "loss": 0.5525,
2553
+ "step": 29600
2554
+ },
2555
+ {
2556
+ "epoch": 2.08710317808893,
2557
+ "grad_norm": 0.8169859647750854,
2558
+ "learning_rate": 6.086447229705986e-05,
2559
+ "loss": 0.5412,
2560
+ "step": 29700
2561
+ },
2562
+ {
2563
+ "epoch": 2.0941304615168392,
2564
+ "grad_norm": 0.6919510960578918,
2565
+ "learning_rate": 6.039592362656671e-05,
2566
+ "loss": 0.5395,
2567
+ "step": 29800
2568
+ },
2569
+ {
2570
+ "epoch": 2.101157744944748,
2571
+ "grad_norm": 0.6376796364784241,
2572
+ "learning_rate": 5.9927374956073566e-05,
2573
+ "loss": 0.5296,
2574
+ "step": 29900
2575
+ },
2576
+ {
2577
+ "epoch": 2.108185028372657,
2578
+ "grad_norm": 0.6056246161460876,
2579
+ "learning_rate": 5.9458826285580416e-05,
2580
+ "loss": 0.5257,
2581
+ "step": 30000
2582
+ },
2583
+ {
2584
+ "epoch": 2.108185028372657,
2585
+ "eval_loss": 0.6040454506874084,
2586
+ "eval_runtime": 119.4721,
2587
+ "eval_samples_per_second": 105.874,
2588
+ "eval_steps_per_second": 13.242,
2589
+ "step": 30000
2590
+ },
2591
+ {
2592
+ "epoch": 2.115212311800566,
2593
+ "grad_norm": 0.7951282858848572,
2594
+ "learning_rate": 5.899027761508727e-05,
2595
+ "loss": 0.5231,
2596
+ "step": 30100
2597
+ },
2598
+ {
2599
+ "epoch": 2.1222395952284745,
2600
+ "grad_norm": 0.7288519144058228,
2601
+ "learning_rate": 5.852172894459412e-05,
2602
+ "loss": 0.533,
2603
+ "step": 30200
2604
+ },
2605
+ {
2606
+ "epoch": 2.1292668786563835,
2607
+ "grad_norm": 0.62901371717453,
2608
+ "learning_rate": 5.8053180274100973e-05,
2609
+ "loss": 0.5475,
2610
+ "step": 30300
2611
+ },
2612
+ {
2613
+ "epoch": 2.136294162084292,
2614
+ "grad_norm": 0.7269171476364136,
2615
+ "learning_rate": 5.758463160360783e-05,
2616
+ "loss": 0.5469,
2617
+ "step": 30400
2618
+ },
2619
+ {
2620
+ "epoch": 2.143321445512201,
2621
+ "grad_norm": 0.8678474426269531,
2622
+ "learning_rate": 5.711608293311468e-05,
2623
+ "loss": 0.5396,
2624
+ "step": 30500
2625
+ },
2626
+ {
2627
+ "epoch": 2.143321445512201,
2628
+ "eval_loss": 0.6033341884613037,
2629
+ "eval_runtime": 119.4525,
2630
+ "eval_samples_per_second": 105.891,
2631
+ "eval_steps_per_second": 13.244,
2632
+ "step": 30500
2633
+ },
2634
+ {
2635
+ "epoch": 2.15034872894011,
2636
+ "grad_norm": 0.5461506843566895,
2637
+ "learning_rate": 5.664753426262154e-05,
2638
+ "loss": 0.5543,
2639
+ "step": 30600
2640
+ },
2641
+ {
2642
+ "epoch": 2.157376012368019,
2643
+ "grad_norm": 0.6282551884651184,
2644
+ "learning_rate": 5.617898559212839e-05,
2645
+ "loss": 0.519,
2646
+ "step": 30700
2647
+ },
2648
+ {
2649
+ "epoch": 2.164403295795928,
2650
+ "grad_norm": 0.5805559158325195,
2651
+ "learning_rate": 5.571043692163523e-05,
2652
+ "loss": 0.5359,
2653
+ "step": 30800
2654
+ },
2655
+ {
2656
+ "epoch": 2.1714305792238364,
2657
+ "grad_norm": 0.7047603726387024,
2658
+ "learning_rate": 5.5241888251142095e-05,
2659
+ "loss": 0.5244,
2660
+ "step": 30900
2661
+ },
2662
+ {
2663
+ "epoch": 2.1784578626517455,
2664
+ "grad_norm": 1.0538957118988037,
2665
+ "learning_rate": 5.477333958064894e-05,
2666
+ "loss": 0.5284,
2667
+ "step": 31000
2668
+ },
2669
+ {
2670
+ "epoch": 2.1784578626517455,
2671
+ "eval_loss": 0.6041498780250549,
2672
+ "eval_runtime": 119.3834,
2673
+ "eval_samples_per_second": 105.953,
2674
+ "eval_steps_per_second": 13.251,
2675
+ "step": 31000
2676
+ },
2677
+ {
2678
+ "epoch": 2.185485146079654,
2679
+ "grad_norm": 0.7913850545883179,
2680
+ "learning_rate": 5.43047909101558e-05,
2681
+ "loss": 0.5267,
2682
+ "step": 31100
2683
+ },
2684
+ {
2685
+ "epoch": 2.192512429507563,
2686
+ "grad_norm": 0.5944955348968506,
2687
+ "learning_rate": 5.3836242239662646e-05,
2688
+ "loss": 0.5359,
2689
+ "step": 31200
2690
+ },
2691
+ {
2692
+ "epoch": 2.199539712935472,
2693
+ "grad_norm": 0.8068099617958069,
2694
+ "learning_rate": 5.3367693569169496e-05,
2695
+ "loss": 0.5449,
2696
+ "step": 31300
2697
+ },
2698
+ {
2699
+ "epoch": 2.2065669963633807,
2700
+ "grad_norm": 0.5993140935897827,
2701
+ "learning_rate": 5.289914489867635e-05,
2702
+ "loss": 0.5384,
2703
+ "step": 31400
2704
+ },
2705
+ {
2706
+ "epoch": 2.2135942797912898,
2707
+ "grad_norm": 0.6852918267250061,
2708
+ "learning_rate": 5.24305962281832e-05,
2709
+ "loss": 0.5448,
2710
+ "step": 31500
2711
+ },
2712
+ {
2713
+ "epoch": 2.2135942797912898,
2714
+ "eval_loss": 0.6034653782844543,
2715
+ "eval_runtime": 119.4509,
2716
+ "eval_samples_per_second": 105.893,
2717
+ "eval_steps_per_second": 13.244,
2718
+ "step": 31500
2719
+ },
2720
+ {
2721
+ "epoch": 2.2206215632191983,
2722
+ "grad_norm": 0.9072486758232117,
2723
+ "learning_rate": 5.1962047557690054e-05,
2724
+ "loss": 0.5392,
2725
+ "step": 31600
2726
+ },
2727
+ {
2728
+ "epoch": 2.2276488466471074,
2729
+ "grad_norm": 0.5671890377998352,
2730
+ "learning_rate": 5.149349888719691e-05,
2731
+ "loss": 0.5366,
2732
+ "step": 31700
2733
+ },
2734
+ {
2735
+ "epoch": 2.2346761300750164,
2736
+ "grad_norm": 0.9552319049835205,
2737
+ "learning_rate": 5.102495021670376e-05,
2738
+ "loss": 0.555,
2739
+ "step": 31800
2740
+ },
2741
+ {
2742
+ "epoch": 2.241703413502925,
2743
+ "grad_norm": 0.9220768809318542,
2744
+ "learning_rate": 5.055640154621062e-05,
2745
+ "loss": 0.5323,
2746
+ "step": 31900
2747
+ },
2748
+ {
2749
+ "epoch": 2.248730696930834,
2750
+ "grad_norm": 0.7823670506477356,
2751
+ "learning_rate": 5.008785287571747e-05,
2752
+ "loss": 0.5484,
2753
+ "step": 32000
2754
+ },
2755
+ {
2756
+ "epoch": 2.248730696930834,
2757
+ "eval_loss": 0.602741539478302,
2758
+ "eval_runtime": 119.5139,
2759
+ "eval_samples_per_second": 105.837,
2760
+ "eval_steps_per_second": 13.237,
2761
+ "step": 32000
2762
+ },
2763
+ {
2764
+ "epoch": 2.2557579803587426,
2765
+ "grad_norm": 0.8530369400978088,
2766
+ "learning_rate": 4.961930420522432e-05,
2767
+ "loss": 0.5443,
2768
+ "step": 32100
2769
+ },
2770
+ {
2771
+ "epoch": 2.2627852637866517,
2772
+ "grad_norm": 0.8256222605705261,
2773
+ "learning_rate": 4.9150755534731175e-05,
2774
+ "loss": 0.5371,
2775
+ "step": 32200
2776
+ },
2777
+ {
2778
+ "epoch": 2.2698125472145607,
2779
+ "grad_norm": 0.8003319501876831,
2780
+ "learning_rate": 4.8682206864238025e-05,
2781
+ "loss": 0.5472,
2782
+ "step": 32300
2783
+ },
2784
+ {
2785
+ "epoch": 2.2768398306424693,
2786
+ "grad_norm": 0.6615211367607117,
2787
+ "learning_rate": 4.8213658193744876e-05,
2788
+ "loss": 0.5349,
2789
+ "step": 32400
2790
+ },
2791
+ {
2792
+ "epoch": 2.2838671140703783,
2793
+ "grad_norm": 0.7718948125839233,
2794
+ "learning_rate": 4.774510952325173e-05,
2795
+ "loss": 0.5253,
2796
+ "step": 32500
2797
+ },
2798
+ {
2799
+ "epoch": 2.2838671140703783,
2800
+ "eval_loss": 0.6034336090087891,
2801
+ "eval_runtime": 119.3326,
2802
+ "eval_samples_per_second": 105.998,
2803
+ "eval_steps_per_second": 13.257,
2804
+ "step": 32500
2805
+ },
2806
+ {
2807
+ "epoch": 2.290894397498287,
2808
+ "grad_norm": 0.6703356504440308,
2809
+ "learning_rate": 4.727656085275858e-05,
2810
+ "loss": 0.5356,
2811
+ "step": 32600
2812
+ },
2813
+ {
2814
+ "epoch": 2.297921680926196,
2815
+ "grad_norm": 0.6417832970619202,
2816
+ "learning_rate": 4.680801218226544e-05,
2817
+ "loss": 0.5456,
2818
+ "step": 32700
2819
+ },
2820
+ {
2821
+ "epoch": 2.3049489643541046,
2822
+ "grad_norm": 0.6749237775802612,
2823
+ "learning_rate": 4.633946351177228e-05,
2824
+ "loss": 0.5374,
2825
+ "step": 32800
2826
+ },
2827
+ {
2828
+ "epoch": 2.3119762477820136,
2829
+ "grad_norm": 0.6223445534706116,
2830
+ "learning_rate": 4.587091484127914e-05,
2831
+ "loss": 0.5254,
2832
+ "step": 32900
2833
+ },
2834
+ {
2835
+ "epoch": 2.3190035312099226,
2836
+ "grad_norm": 0.6455600261688232,
2837
+ "learning_rate": 4.540236617078599e-05,
2838
+ "loss": 0.5322,
2839
+ "step": 33000
2840
+ },
2841
+ {
2842
+ "epoch": 2.3190035312099226,
2843
+ "eval_loss": 0.602424144744873,
2844
+ "eval_runtime": 119.6802,
2845
+ "eval_samples_per_second": 105.69,
2846
+ "eval_steps_per_second": 13.219,
2847
+ "step": 33000
2848
+ },
2849
+ {
2850
+ "epoch": 2.3260308146378312,
2851
+ "grad_norm": 0.6882891058921814,
2852
+ "learning_rate": 4.493381750029285e-05,
2853
+ "loss": 0.5406,
2854
+ "step": 33100
2855
+ },
2856
+ {
2857
+ "epoch": 2.3330580980657403,
2858
+ "grad_norm": 0.7169196605682373,
2859
+ "learning_rate": 4.44652688297997e-05,
2860
+ "loss": 0.5367,
2861
+ "step": 33200
2862
+ },
2863
+ {
2864
+ "epoch": 2.3400853814936493,
2865
+ "grad_norm": 0.6603942513465881,
2866
+ "learning_rate": 4.399672015930655e-05,
2867
+ "loss": 0.5315,
2868
+ "step": 33300
2869
+ },
2870
+ {
2871
+ "epoch": 2.347112664921558,
2872
+ "grad_norm": 0.7974775433540344,
2873
+ "learning_rate": 4.3528171488813405e-05,
2874
+ "loss": 0.5438,
2875
+ "step": 33400
2876
+ },
2877
+ {
2878
+ "epoch": 2.354139948349467,
2879
+ "grad_norm": 0.7672884464263916,
2880
+ "learning_rate": 4.3059622818320255e-05,
2881
+ "loss": 0.5583,
2882
+ "step": 33500
2883
+ },
2884
+ {
2885
+ "epoch": 2.354139948349467,
2886
+ "eval_loss": 0.6008437871932983,
2887
+ "eval_runtime": 119.0367,
2888
+ "eval_samples_per_second": 106.261,
2889
+ "eval_steps_per_second": 13.29,
2890
+ "step": 33500
2891
+ },
2892
+ {
2893
+ "epoch": 2.3611672317773755,
2894
+ "grad_norm": 0.7062329649925232,
2895
+ "learning_rate": 4.259107414782711e-05,
2896
+ "loss": 0.5548,
2897
+ "step": 33600
2898
+ },
2899
+ {
2900
+ "epoch": 2.3681945152052846,
2901
+ "grad_norm": 0.754173219203949,
2902
+ "learning_rate": 4.212252547733396e-05,
2903
+ "loss": 0.5276,
2904
+ "step": 33700
2905
+ },
2906
+ {
2907
+ "epoch": 2.375221798633193,
2908
+ "grad_norm": 0.7143212556838989,
2909
+ "learning_rate": 4.165397680684081e-05,
2910
+ "loss": 0.5413,
2911
+ "step": 33800
2912
+ },
2913
+ {
2914
+ "epoch": 2.382249082061102,
2915
+ "grad_norm": 0.8082584142684937,
2916
+ "learning_rate": 4.118542813634766e-05,
2917
+ "loss": 0.534,
2918
+ "step": 33900
2919
+ },
2920
+ {
2921
+ "epoch": 2.3892763654890112,
2922
+ "grad_norm": 0.7493578791618347,
2923
+ "learning_rate": 4.071687946585452e-05,
2924
+ "loss": 0.5373,
2925
+ "step": 34000
2926
+ },
2927
+ {
2928
+ "epoch": 2.3892763654890112,
2929
+ "eval_loss": 0.6015102863311768,
2930
+ "eval_runtime": 119.2005,
2931
+ "eval_samples_per_second": 106.115,
2932
+ "eval_steps_per_second": 13.272,
2933
+ "step": 34000
2934
+ },
2935
+ {
2936
+ "epoch": 2.39630364891692,
2937
+ "grad_norm": 0.9309408068656921,
2938
+ "learning_rate": 4.024833079536137e-05,
2939
+ "loss": 0.5464,
2940
+ "step": 34100
2941
+ },
2942
+ {
2943
+ "epoch": 2.403330932344829,
2944
+ "grad_norm": 0.6309605240821838,
2945
+ "learning_rate": 3.977978212486822e-05,
2946
+ "loss": 0.5439,
2947
+ "step": 34200
2948
+ },
2949
+ {
2950
+ "epoch": 2.410358215772738,
2951
+ "grad_norm": 0.6428382992744446,
2952
+ "learning_rate": 3.931123345437507e-05,
2953
+ "loss": 0.5412,
2954
+ "step": 34300
2955
+ },
2956
+ {
2957
+ "epoch": 2.4173854992006465,
2958
+ "grad_norm": 0.9063606262207031,
2959
+ "learning_rate": 3.884268478388193e-05,
2960
+ "loss": 0.5477,
2961
+ "step": 34400
2962
+ },
2963
+ {
2964
+ "epoch": 2.4244127826285555,
2965
+ "grad_norm": 0.7051374316215515,
2966
+ "learning_rate": 3.837413611338878e-05,
2967
+ "loss": 0.5351,
2968
+ "step": 34500
2969
+ },
2970
+ {
2971
+ "epoch": 2.4244127826285555,
2972
+ "eval_loss": 0.6011614203453064,
2973
+ "eval_runtime": 119.6428,
2974
+ "eval_samples_per_second": 105.723,
2975
+ "eval_steps_per_second": 13.223,
2976
+ "step": 34500
2977
+ },
2978
+ {
2979
+ "epoch": 2.431440066056464,
2980
+ "grad_norm": 0.7466573119163513,
2981
+ "learning_rate": 3.7905587442895635e-05,
2982
+ "loss": 0.5525,
2983
+ "step": 34600
2984
+ },
2985
+ {
2986
+ "epoch": 2.438467349484373,
2987
+ "grad_norm": 0.8113718628883362,
2988
+ "learning_rate": 3.7437038772402485e-05,
2989
+ "loss": 0.553,
2990
+ "step": 34700
2991
+ },
2992
+ {
2993
+ "epoch": 2.4454946329122818,
2994
+ "grad_norm": 0.5469939112663269,
2995
+ "learning_rate": 3.6968490101909335e-05,
2996
+ "loss": 0.5438,
2997
+ "step": 34800
2998
+ },
2999
+ {
3000
+ "epoch": 2.452521916340191,
3001
+ "grad_norm": 0.6911020278930664,
3002
+ "learning_rate": 3.649994143141619e-05,
3003
+ "loss": 0.5349,
3004
+ "step": 34900
3005
+ },
3006
+ {
3007
+ "epoch": 2.4595491997681,
3008
+ "grad_norm": 0.7164533734321594,
3009
+ "learning_rate": 3.603139276092304e-05,
3010
+ "loss": 0.5237,
3011
+ "step": 35000
3012
+ },
3013
+ {
3014
+ "epoch": 2.4595491997681,
3015
+ "eval_loss": 0.6016719937324524,
3016
+ "eval_runtime": 119.4046,
3017
+ "eval_samples_per_second": 105.934,
3018
+ "eval_steps_per_second": 13.249,
3019
+ "step": 35000
3020
+ },
3021
+ {
3022
+ "epoch": 2.4665764831960084,
3023
+ "grad_norm": 0.8674111366271973,
3024
+ "learning_rate": 3.55628440904299e-05,
3025
+ "loss": 0.5469,
3026
+ "step": 35100
3027
+ },
3028
+ {
3029
+ "epoch": 2.4736037666239175,
3030
+ "grad_norm": 0.9044885039329529,
3031
+ "learning_rate": 3.509429541993674e-05,
3032
+ "loss": 0.5445,
3033
+ "step": 35200
3034
+ },
3035
+ {
3036
+ "epoch": 2.480631050051826,
3037
+ "grad_norm": 0.7213521599769592,
3038
+ "learning_rate": 3.46257467494436e-05,
3039
+ "loss": 0.5136,
3040
+ "step": 35300
3041
+ },
3042
+ {
3043
+ "epoch": 2.487658333479735,
3044
+ "grad_norm": 0.6873759627342224,
3045
+ "learning_rate": 3.415719807895045e-05,
3046
+ "loss": 0.5362,
3047
+ "step": 35400
3048
+ },
3049
+ {
3050
+ "epoch": 2.494685616907644,
3051
+ "grad_norm": 0.6950516104698181,
3052
+ "learning_rate": 3.368864940845731e-05,
3053
+ "loss": 0.535,
3054
+ "step": 35500
3055
+ },
3056
+ {
3057
+ "epoch": 2.494685616907644,
3058
+ "eval_loss": 0.6001349091529846,
3059
+ "eval_runtime": 119.0417,
3060
+ "eval_samples_per_second": 106.257,
3061
+ "eval_steps_per_second": 13.289,
3062
+ "step": 35500
3063
+ },
3064
+ {
3065
+ "epoch": 2.5017129003355527,
3066
+ "grad_norm": 0.6840397715568542,
3067
+ "learning_rate": 3.322010073796416e-05,
3068
+ "loss": 0.5385,
3069
+ "step": 35600
3070
+ },
3071
+ {
3072
+ "epoch": 2.5087401837634618,
3073
+ "grad_norm": 0.5907210111618042,
3074
+ "learning_rate": 3.275155206747101e-05,
3075
+ "loss": 0.5429,
3076
+ "step": 35700
3077
+ },
3078
+ {
3079
+ "epoch": 2.5157674671913703,
3080
+ "grad_norm": 0.801002025604248,
3081
+ "learning_rate": 3.2283003396977865e-05,
3082
+ "loss": 0.5224,
3083
+ "step": 35800
3084
+ },
3085
+ {
3086
+ "epoch": 2.5227947506192794,
3087
+ "grad_norm": 0.7259572148323059,
3088
+ "learning_rate": 3.1814454726484715e-05,
3089
+ "loss": 0.5297,
3090
+ "step": 35900
3091
+ },
3092
+ {
3093
+ "epoch": 2.5298220340471884,
3094
+ "grad_norm": 0.6602583527565002,
3095
+ "learning_rate": 3.134590605599157e-05,
3096
+ "loss": 0.5496,
3097
+ "step": 36000
3098
+ },
3099
+ {
3100
+ "epoch": 2.5298220340471884,
3101
+ "eval_loss": 0.5990512371063232,
3102
+ "eval_runtime": 118.9771,
3103
+ "eval_samples_per_second": 106.315,
3104
+ "eval_steps_per_second": 13.297,
3105
+ "step": 36000
3106
+ },
3107
+ {
3108
+ "epoch": 2.536849317475097,
3109
+ "grad_norm": 0.6192248463630676,
3110
+ "learning_rate": 3.0877357385498415e-05,
3111
+ "loss": 0.5432,
3112
+ "step": 36100
3113
+ },
3114
+ {
3115
+ "epoch": 2.543876600903006,
3116
+ "grad_norm": 1.0253371000289917,
3117
+ "learning_rate": 3.0408808715005272e-05,
3118
+ "loss": 0.5254,
3119
+ "step": 36200
3120
+ },
3121
+ {
3122
+ "epoch": 2.5509038843309146,
3123
+ "grad_norm": 0.8612440228462219,
3124
+ "learning_rate": 2.9940260044512126e-05,
3125
+ "loss": 0.56,
3126
+ "step": 36300
3127
+ },
3128
+ {
3129
+ "epoch": 2.5579311677588237,
3130
+ "grad_norm": 0.5663143992424011,
3131
+ "learning_rate": 2.947171137401898e-05,
3132
+ "loss": 0.5329,
3133
+ "step": 36400
3134
+ },
3135
+ {
3136
+ "epoch": 2.5649584511867323,
3137
+ "grad_norm": 0.9142153263092041,
3138
+ "learning_rate": 2.9003162703525833e-05,
3139
+ "loss": 0.5384,
3140
+ "step": 36500
3141
+ },
3142
+ {
3143
+ "epoch": 2.5649584511867323,
3144
+ "eval_loss": 0.5994681715965271,
3145
+ "eval_runtime": 119.2506,
3146
+ "eval_samples_per_second": 106.071,
3147
+ "eval_steps_per_second": 13.266,
3148
+ "step": 36500
3149
+ },
3150
+ {
3151
+ "epoch": 2.5719857346146413,
3152
+ "grad_norm": 0.6240784525871277,
3153
+ "learning_rate": 2.853461403303268e-05,
3154
+ "loss": 0.5332,
3155
+ "step": 36600
3156
+ },
3157
+ {
3158
+ "epoch": 2.5790130180425503,
3159
+ "grad_norm": 0.7204896211624146,
3160
+ "learning_rate": 2.8066065362539534e-05,
3161
+ "loss": 0.534,
3162
+ "step": 36700
3163
+ },
3164
+ {
3165
+ "epoch": 2.586040301470459,
3166
+ "grad_norm": 0.8071198463439941,
3167
+ "learning_rate": 2.7597516692046387e-05,
3168
+ "loss": 0.533,
3169
+ "step": 36800
3170
+ },
3171
+ {
3172
+ "epoch": 2.593067584898368,
3173
+ "grad_norm": 0.5369657278060913,
3174
+ "learning_rate": 2.712896802155324e-05,
3175
+ "loss": 0.5325,
3176
+ "step": 36900
3177
+ },
3178
+ {
3179
+ "epoch": 2.600094868326277,
3180
+ "grad_norm": 0.8969751000404358,
3181
+ "learning_rate": 2.6660419351060095e-05,
3182
+ "loss": 0.5349,
3183
+ "step": 37000
3184
+ },
3185
+ {
3186
+ "epoch": 2.600094868326277,
3187
+ "eval_loss": 0.5992428064346313,
3188
+ "eval_runtime": 119.3558,
3189
+ "eval_samples_per_second": 105.977,
3190
+ "eval_steps_per_second": 13.254,
3191
+ "step": 37000
3192
+ },
3193
+ {
3194
+ "epoch": 2.6071221517541856,
3195
+ "grad_norm": 0.8350916504859924,
3196
+ "learning_rate": 2.6191870680566945e-05,
3197
+ "loss": 0.5388,
3198
+ "step": 37100
3199
+ },
3200
+ {
3201
+ "epoch": 2.6141494351820946,
3202
+ "grad_norm": 0.5793244242668152,
3203
+ "learning_rate": 2.57233220100738e-05,
3204
+ "loss": 0.5211,
3205
+ "step": 37200
3206
+ },
3207
+ {
3208
+ "epoch": 2.6211767186100032,
3209
+ "grad_norm": 0.6331949830055237,
3210
+ "learning_rate": 2.5254773339580652e-05,
3211
+ "loss": 0.5335,
3212
+ "step": 37300
3213
+ },
3214
+ {
3215
+ "epoch": 2.6282040020379123,
3216
+ "grad_norm": 0.799247145652771,
3217
+ "learning_rate": 2.4786224669087502e-05,
3218
+ "loss": 0.5474,
3219
+ "step": 37400
3220
+ },
3221
+ {
3222
+ "epoch": 2.635231285465821,
3223
+ "grad_norm": 0.7149389386177063,
3224
+ "learning_rate": 2.4317675998594356e-05,
3225
+ "loss": 0.5316,
3226
+ "step": 37500
3227
+ },
3228
+ {
3229
+ "epoch": 2.635231285465821,
3230
+ "eval_loss": 0.5990239977836609,
3231
+ "eval_runtime": 119.2093,
3232
+ "eval_samples_per_second": 106.107,
3233
+ "eval_steps_per_second": 13.271,
3234
+ "step": 37500
3235
+ },
3236
+ {
3237
+ "epoch": 2.64225856889373,
3238
+ "grad_norm": 0.6996687650680542,
3239
+ "learning_rate": 2.384912732810121e-05,
3240
+ "loss": 0.5244,
3241
+ "step": 37600
3242
+ },
3243
+ {
3244
+ "epoch": 2.649285852321639,
3245
+ "grad_norm": 0.6374346017837524,
3246
+ "learning_rate": 2.338057865760806e-05,
3247
+ "loss": 0.5221,
3248
+ "step": 37700
3249
+ },
3250
+ {
3251
+ "epoch": 2.6563131357495475,
3252
+ "grad_norm": 0.7678332328796387,
3253
+ "learning_rate": 2.2912029987114913e-05,
3254
+ "loss": 0.5251,
3255
+ "step": 37800
3256
+ },
3257
+ {
3258
+ "epoch": 2.6633404191774566,
3259
+ "grad_norm": 0.6463155150413513,
3260
+ "learning_rate": 2.2443481316621764e-05,
3261
+ "loss": 0.5343,
3262
+ "step": 37900
3263
+ },
3264
+ {
3265
+ "epoch": 2.6703677026053656,
3266
+ "grad_norm": 0.6788434386253357,
3267
+ "learning_rate": 2.1974932646128617e-05,
3268
+ "loss": 0.5276,
3269
+ "step": 38000
3270
+ },
3271
+ {
3272
+ "epoch": 2.6703677026053656,
3273
+ "eval_loss": 0.5986095070838928,
3274
+ "eval_runtime": 119.1797,
3275
+ "eval_samples_per_second": 106.134,
3276
+ "eval_steps_per_second": 13.274,
3277
+ "step": 38000
3278
+ },
3279
+ {
3280
+ "epoch": 2.677394986033274,
3281
+ "grad_norm": 0.7115055322647095,
3282
+ "learning_rate": 2.1506383975635467e-05,
3283
+ "loss": 0.5583,
3284
+ "step": 38100
3285
+ },
3286
+ {
3287
+ "epoch": 2.684422269461183,
3288
+ "grad_norm": 0.7007845044136047,
3289
+ "learning_rate": 2.103783530514232e-05,
3290
+ "loss": 0.5294,
3291
+ "step": 38200
3292
+ },
3293
+ {
3294
+ "epoch": 2.691449552889092,
3295
+ "grad_norm": 1.0714610815048218,
3296
+ "learning_rate": 2.0569286634649178e-05,
3297
+ "loss": 0.54,
3298
+ "step": 38300
3299
+ },
3300
+ {
3301
+ "epoch": 2.698476836317001,
3302
+ "grad_norm": 0.6736337542533875,
3303
+ "learning_rate": 2.0100737964156028e-05,
3304
+ "loss": 0.5343,
3305
+ "step": 38400
3306
+ },
3307
+ {
3308
+ "epoch": 2.7055041197449095,
3309
+ "grad_norm": 0.6769545078277588,
3310
+ "learning_rate": 1.9632189293662882e-05,
3311
+ "loss": 0.5406,
3312
+ "step": 38500
3313
+ },
3314
+ {
3315
+ "epoch": 2.7055041197449095,
3316
+ "eval_loss": 0.5980576276779175,
3317
+ "eval_runtime": 119.2056,
3318
+ "eval_samples_per_second": 106.111,
3319
+ "eval_steps_per_second": 13.271,
3320
+ "step": 38500
3321
+ },
3322
+ {
3323
+ "epoch": 2.7125314031728185,
3324
+ "grad_norm": 0.714820384979248,
3325
+ "learning_rate": 1.9163640623169732e-05,
3326
+ "loss": 0.5408,
3327
+ "step": 38600
3328
+ },
3329
+ {
3330
+ "epoch": 2.7195586866007275,
3331
+ "grad_norm": 0.5211949944496155,
3332
+ "learning_rate": 1.8695091952676586e-05,
3333
+ "loss": 0.5257,
3334
+ "step": 38700
3335
+ },
3336
+ {
3337
+ "epoch": 2.726585970028636,
3338
+ "grad_norm": 0.7966856360435486,
3339
+ "learning_rate": 1.8226543282183436e-05,
3340
+ "loss": 0.5381,
3341
+ "step": 38800
3342
+ },
3343
+ {
3344
+ "epoch": 2.733613253456545,
3345
+ "grad_norm": 0.7282027006149292,
3346
+ "learning_rate": 1.775799461169029e-05,
3347
+ "loss": 0.5415,
3348
+ "step": 38900
3349
+ },
3350
+ {
3351
+ "epoch": 2.7406405368844537,
3352
+ "grad_norm": 0.7190561890602112,
3353
+ "learning_rate": 1.7289445941197143e-05,
3354
+ "loss": 0.5436,
3355
+ "step": 39000
3356
+ },
3357
+ {
3358
+ "epoch": 2.7406405368844537,
3359
+ "eval_loss": 0.5981852412223816,
3360
+ "eval_runtime": 119.2717,
3361
+ "eval_samples_per_second": 106.052,
3362
+ "eval_steps_per_second": 13.264,
3363
+ "step": 39000
3364
+ },
3365
+ {
3366
+ "epoch": 2.747667820312363,
3367
+ "grad_norm": 0.6859644651412964,
3368
+ "learning_rate": 1.6820897270703993e-05,
3369
+ "loss": 0.5371,
3370
+ "step": 39100
3371
+ },
3372
+ {
3373
+ "epoch": 2.7546951037402714,
3374
+ "grad_norm": 0.6917553544044495,
3375
+ "learning_rate": 1.6352348600210847e-05,
3376
+ "loss": 0.5411,
3377
+ "step": 39200
3378
+ },
3379
+ {
3380
+ "epoch": 2.7617223871681804,
3381
+ "grad_norm": 0.5737515687942505,
3382
+ "learning_rate": 1.58837999297177e-05,
3383
+ "loss": 0.5244,
3384
+ "step": 39300
3385
+ },
3386
+ {
3387
+ "epoch": 2.7687496705960895,
3388
+ "grad_norm": 0.7747429013252258,
3389
+ "learning_rate": 1.5415251259224554e-05,
3390
+ "loss": 0.5452,
3391
+ "step": 39400
3392
+ },
3393
+ {
3394
+ "epoch": 2.775776954023998,
3395
+ "grad_norm": 0.6782782673835754,
3396
+ "learning_rate": 1.4946702588731405e-05,
3397
+ "loss": 0.5392,
3398
+ "step": 39500
3399
+ },
3400
+ {
3401
+ "epoch": 2.775776954023998,
3402
+ "eval_loss": 0.597685694694519,
3403
+ "eval_runtime": 119.3501,
3404
+ "eval_samples_per_second": 105.982,
3405
+ "eval_steps_per_second": 13.255,
3406
+ "step": 39500
3407
+ },
3408
+ {
3409
+ "epoch": 2.782804237451907,
3410
+ "grad_norm": 0.6675652265548706,
3411
+ "learning_rate": 1.4478153918238258e-05,
3412
+ "loss": 0.534,
3413
+ "step": 39600
3414
+ },
3415
+ {
3416
+ "epoch": 2.789831520879816,
3417
+ "grad_norm": 0.822902262210846,
3418
+ "learning_rate": 1.4009605247745112e-05,
3419
+ "loss": 0.5582,
3420
+ "step": 39700
3421
+ },
3422
+ {
3423
+ "epoch": 2.7968588043077247,
3424
+ "grad_norm": 0.6393033266067505,
3425
+ "learning_rate": 1.3541056577251962e-05,
3426
+ "loss": 0.5442,
3427
+ "step": 39800
3428
+ },
3429
+ {
3430
+ "epoch": 2.8038860877356337,
3431
+ "grad_norm": 0.744646430015564,
3432
+ "learning_rate": 1.3072507906758816e-05,
3433
+ "loss": 0.537,
3434
+ "step": 39900
3435
+ },
3436
+ {
3437
+ "epoch": 2.8109133711635423,
3438
+ "grad_norm": 0.5728178024291992,
3439
+ "learning_rate": 1.2603959236265666e-05,
3440
+ "loss": 0.5316,
3441
+ "step": 40000
3442
+ },
3443
+ {
3444
+ "epoch": 2.8109133711635423,
3445
+ "eval_loss": 0.5975730419158936,
3446
+ "eval_runtime": 119.1706,
3447
+ "eval_samples_per_second": 106.142,
3448
+ "eval_steps_per_second": 13.275,
3449
+ "step": 40000
3450
+ },
3451
+ {
3452
+ "epoch": 2.8179406545914514,
3453
+ "grad_norm": 0.6350817680358887,
3454
+ "learning_rate": 1.2135410565772521e-05,
3455
+ "loss": 0.5345,
3456
+ "step": 40100
3457
+ },
3458
+ {
3459
+ "epoch": 2.82496793801936,
3460
+ "grad_norm": 0.5875131487846375,
3461
+ "learning_rate": 1.1666861895279373e-05,
3462
+ "loss": 0.5336,
3463
+ "step": 40200
3464
+ },
3465
+ {
3466
+ "epoch": 2.831995221447269,
3467
+ "grad_norm": 0.7108073234558105,
3468
+ "learning_rate": 1.1198313224786225e-05,
3469
+ "loss": 0.5364,
3470
+ "step": 40300
3471
+ },
3472
+ {
3473
+ "epoch": 2.839022504875178,
3474
+ "grad_norm": 0.5973334312438965,
3475
+ "learning_rate": 1.0729764554293077e-05,
3476
+ "loss": 0.5468,
3477
+ "step": 40400
3478
+ },
3479
+ {
3480
+ "epoch": 2.8460497883030866,
3481
+ "grad_norm": 0.7775806784629822,
3482
+ "learning_rate": 1.026121588379993e-05,
3483
+ "loss": 0.5349,
3484
+ "step": 40500
3485
+ },
3486
+ {
3487
+ "epoch": 2.8460497883030866,
3488
+ "eval_loss": 0.5973463654518127,
3489
+ "eval_runtime": 119.0857,
3490
+ "eval_samples_per_second": 106.218,
3491
+ "eval_steps_per_second": 13.285,
3492
+ "step": 40500
3493
+ },
3494
+ {
3495
+ "epoch": 2.8530770717309957,
3496
+ "grad_norm": 0.6160515546798706,
3497
+ "learning_rate": 9.792667213306782e-06,
3498
+ "loss": 0.5317,
3499
+ "step": 40600
3500
+ },
3501
+ {
3502
+ "epoch": 2.8601043551589047,
3503
+ "grad_norm": 0.715397834777832,
3504
+ "learning_rate": 9.324118542813636e-06,
3505
+ "loss": 0.5119,
3506
+ "step": 40700
3507
+ },
3508
+ {
3509
+ "epoch": 2.8671316385868133,
3510
+ "grad_norm": 0.7450791001319885,
3511
+ "learning_rate": 8.855569872320488e-06,
3512
+ "loss": 0.5302,
3513
+ "step": 40800
3514
+ },
3515
+ {
3516
+ "epoch": 2.874158922014722,
3517
+ "grad_norm": 0.5536558628082275,
3518
+ "learning_rate": 8.38702120182734e-06,
3519
+ "loss": 0.5239,
3520
+ "step": 40900
3521
+ },
3522
+ {
3523
+ "epoch": 2.881186205442631,
3524
+ "grad_norm": 0.5844016075134277,
3525
+ "learning_rate": 7.918472531334192e-06,
3526
+ "loss": 0.5341,
3527
+ "step": 41000
3528
+ },
3529
+ {
3530
+ "epoch": 2.881186205442631,
3531
+ "eval_loss": 0.5972412824630737,
3532
+ "eval_runtime": 119.0402,
3533
+ "eval_samples_per_second": 106.258,
3534
+ "eval_steps_per_second": 13.29,
3535
+ "step": 41000
3536
+ },
3537
+ {
3538
+ "epoch": 2.88821348887054,
3539
+ "grad_norm": 0.566956639289856,
3540
+ "learning_rate": 7.449923860841045e-06,
3541
+ "loss": 0.5387,
3542
+ "step": 41100
3543
+ },
3544
+ {
3545
+ "epoch": 2.8952407722984486,
3546
+ "grad_norm": 0.6934293508529663,
3547
+ "learning_rate": 6.981375190347898e-06,
3548
+ "loss": 0.5185,
3549
+ "step": 41200
3550
+ },
3551
+ {
3552
+ "epoch": 2.9022680557263576,
3553
+ "grad_norm": 0.6890417337417603,
3554
+ "learning_rate": 6.51282651985475e-06,
3555
+ "loss": 0.5419,
3556
+ "step": 41300
3557
+ },
3558
+ {
3559
+ "epoch": 2.9092953391542666,
3560
+ "grad_norm": 0.8735133409500122,
3561
+ "learning_rate": 6.044277849361603e-06,
3562
+ "loss": 0.5314,
3563
+ "step": 41400
3564
+ },
3565
+ {
3566
+ "epoch": 2.9163226225821752,
3567
+ "grad_norm": 0.746161162853241,
3568
+ "learning_rate": 5.575729178868455e-06,
3569
+ "loss": 0.5208,
3570
+ "step": 41500
3571
+ },
3572
+ {
3573
+ "epoch": 2.9163226225821752,
3574
+ "eval_loss": 0.5972864031791687,
3575
+ "eval_runtime": 118.9512,
3576
+ "eval_samples_per_second": 106.338,
3577
+ "eval_steps_per_second": 13.3,
3578
+ "step": 41500
3579
+ },
3580
+ {
3581
+ "epoch": 2.9233499060100843,
3582
+ "grad_norm": 0.9560967683792114,
3583
+ "learning_rate": 5.107180508375308e-06,
3584
+ "loss": 0.5505,
3585
+ "step": 41600
3586
+ },
3587
+ {
3588
+ "epoch": 2.930377189437993,
3589
+ "grad_norm": 0.7499198317527771,
3590
+ "learning_rate": 4.63863183788216e-06,
3591
+ "loss": 0.5378,
3592
+ "step": 41700
3593
+ },
3594
+ {
3595
+ "epoch": 2.937404472865902,
3596
+ "grad_norm": 0.6939593553543091,
3597
+ "learning_rate": 4.170083167389012e-06,
3598
+ "loss": 0.5351,
3599
+ "step": 41800
3600
+ },
3601
+ {
3602
+ "epoch": 2.9444317562938105,
3603
+ "grad_norm": 0.6184145212173462,
3604
+ "learning_rate": 3.701534496895865e-06,
3605
+ "loss": 0.5171,
3606
+ "step": 41900
3607
+ },
3608
+ {
3609
+ "epoch": 2.9514590397217195,
3610
+ "grad_norm": 0.6636520624160767,
3611
+ "learning_rate": 3.232985826402718e-06,
3612
+ "loss": 0.53,
3613
+ "step": 42000
3614
+ },
3615
+ {
3616
+ "epoch": 2.9514590397217195,
3617
+ "eval_loss": 0.5971269607543945,
3618
+ "eval_runtime": 118.9184,
3619
+ "eval_samples_per_second": 106.367,
3620
+ "eval_steps_per_second": 13.303,
3621
+ "step": 42000
3622
+ },
3623
+ {
3624
+ "epoch": 2.9584863231496286,
3625
+ "grad_norm": 0.8458754420280457,
3626
+ "learning_rate": 2.76443715590957e-06,
3627
+ "loss": 0.5447,
3628
+ "step": 42100
3629
+ },
3630
+ {
3631
+ "epoch": 2.965513606577537,
3632
+ "grad_norm": 0.6426025032997131,
3633
+ "learning_rate": 2.295888485416423e-06,
3634
+ "loss": 0.5287,
3635
+ "step": 42200
3636
+ },
3637
+ {
3638
+ "epoch": 2.972540890005446,
3639
+ "grad_norm": 0.7159422039985657,
3640
+ "learning_rate": 1.827339814923275e-06,
3641
+ "loss": 0.5288,
3642
+ "step": 42300
3643
+ },
3644
+ {
3645
+ "epoch": 2.9795681734333552,
3646
+ "grad_norm": 0.6702597141265869,
3647
+ "learning_rate": 1.3587911444301279e-06,
3648
+ "loss": 0.5419,
3649
+ "step": 42400
3650
+ },
3651
+ {
3652
+ "epoch": 2.986595456861264,
3653
+ "grad_norm": 0.7953273057937622,
3654
+ "learning_rate": 8.902424739369803e-07,
3655
+ "loss": 0.5445,
3656
+ "step": 42500
3657
+ },
3658
+ {
3659
+ "epoch": 2.986595456861264,
3660
+ "eval_loss": 0.5969375371932983,
3661
+ "eval_runtime": 119.2187,
3662
+ "eval_samples_per_second": 106.099,
3663
+ "eval_steps_per_second": 13.27,
3664
+ "step": 42500
3665
+ },
3666
+ {
3667
+ "epoch": 2.993622740289173,
3668
+ "grad_norm": 0.5247675180435181,
3669
+ "learning_rate": 4.216938034438327e-07,
3670
+ "loss": 0.5485,
3671
+ "step": 42600
3672
  }
3673
  ],
3674
  "logging_steps": 100,
 
3683
  "should_evaluate": false,
3684
  "should_log": false,
3685
  "should_save": true,
3686
+ "should_training_stop": true
3687
  },
3688
  "attributes": {}
3689
  }
3690
  },
3691
+ "total_flos": 1.4552903446892544e+17,
3692
  "train_batch_size": 2,
3693
  "trial_name": null,
3694
  "trial_params": null