Upload 11 files
Browse files- README.md +143 -132
- adapter_model.safetensors +1 -1
- optimizer.pt +1 -1
- rng_state.pth +1 -1
- scheduler.pt +1 -1
- trainer_state.json +1258 -4
README.md
CHANGED
@@ -1,191 +1,202 @@
|
|
1 |
---
|
2 |
base_model: AI-Sweden-Models/gpt-sw3-1.3b
|
3 |
library_name: peft
|
4 |
-
datasets:
|
5 |
-
- barbaroo/Sprotin_parallel
|
6 |
-
language:
|
7 |
-
- en
|
8 |
-
- fo
|
9 |
-
metrics:
|
10 |
-
- bleu
|
11 |
-
- chrf
|
12 |
-
- bertscore
|
13 |
-
pipeline_tag: text-generation
|
14 |
---
|
15 |
|
16 |
-
Model Card
|
|
|
|
|
|
|
|
|
17 |
|
18 |
## Model Details
|
19 |
|
20 |
-
|
21 |
|
22 |
-
|
23 |
-
- **Model type:** Language model adapter for **English → Faroese** translation
|
24 |
-
- **Language(s):** English, Faroese
|
25 |
-
- **License:** This adapter inherits the license from the original GPT-SW3 1.3 B model.
|
26 |
-
- **Finetuned from model:** [AI-Sweden-Models/gpt-sw3-1.3b](https://huggingface.co/AI-Sweden-Models/gpt-sw3-1.3b)
|
27 |
-
- **Library used:** [PEFT 0.13.0](https://github.com/huggingface/peft)
|
28 |
|
29 |
-
### Model Sources
|
30 |
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
## Uses
|
35 |
|
|
|
|
|
36 |
### Direct Use
|
37 |
-
|
|
|
|
|
|
|
38 |
|
39 |
### Downstream Use [optional]
|
40 |
-
- Can be integrated into broader **multilingual** or **localization** workflows.
|
41 |
|
|
|
|
|
|
|
42 |
|
43 |
### Out-of-Scope Use
|
44 |
-
- Any uses that rely on languages other than **English or Faroese** will likely yield suboptimal results.
|
45 |
-
- Other tasks (e.g., summarization, classification) may be unsupported or require further fine-tuning.
|
46 |
|
47 |
-
|
|
|
|
|
48 |
|
49 |
## Bias, Risks, and Limitations
|
50 |
-
- **Biases:** The model could reflect **biases** present in the training data, such as historical or societal biases in English or Faroese texts.
|
51 |
-
- **Recommendation:** Users should **critically evaluate** outputs, especially in sensitive or high-stakes applications.
|
52 |
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
## How to Get Started with the Model
|
56 |
|
57 |
-
|
58 |
-
import torch
|
59 |
-
from peft import AutoPeftModelForCausalLM
|
60 |
-
from transformers import AutoTokenizer
|
61 |
-
import pandas as pd
|
62 |
-
|
63 |
-
ADAPTER_REPO = "barbaroo/gptsw3_translate_1.3B"
|
64 |
-
BASE_MODEL = "AI-Sweden-Models/gpt-sw3-1.3b"
|
65 |
-
|
66 |
-
# 1. Load the tokenizer from the base model
|
67 |
-
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
|
68 |
-
|
69 |
-
model = AutoPeftModelForCausalLM.from_pretrained(
|
70 |
-
ADAPTER_REPO,
|
71 |
-
load_in_8bit=True, # Optional: 8-bit quantization for GPU memory efficiency
|
72 |
-
device_map="auto", # Automatically spread layers across available GPUs
|
73 |
-
)
|
74 |
-
|
75 |
-
# Ensure the model is in evaluation mode
|
76 |
-
model.eval()
|
77 |
-
|
78 |
-
# Alpaca-style prompt template
|
79 |
-
alpaca_prompt = """
|
80 |
-
### Instruction:
|
81 |
-
{}
|
82 |
-
|
83 |
-
### Input:
|
84 |
-
{}
|
85 |
-
|
86 |
-
### Response:
|
87 |
-
{}
|
88 |
-
"""
|
89 |
-
|
90 |
-
# EOS token from the tokenizer
|
91 |
-
EOS_TOKEN = tokenizer.eos_token
|
92 |
-
print(EOS_TOKEN)
|
93 |
-
|
94 |
-
sentences = ['hello world']
|
95 |
-
|
96 |
-
translations = []
|
97 |
-
|
98 |
-
for sentence in sentences:
|
99 |
-
# Tokenize the input sentence and prepare the prompt for each sentence
|
100 |
-
inputs = tokenizer(
|
101 |
-
[
|
102 |
-
alpaca_prompt.format(
|
103 |
-
"Translate this sentence from English to Faroese:", # instruction
|
104 |
-
sentence, # input sentence to translate
|
105 |
-
"", # output - leave blank for generation
|
106 |
-
)
|
107 |
-
],
|
108 |
-
return_tensors="pt"
|
109 |
-
).to("cuda")
|
110 |
-
|
111 |
-
# Generate the output
|
112 |
-
outputs = model.generate(**inputs,
|
113 |
-
max_new_tokens=2000,
|
114 |
-
eos_token_id=tokenizer.eos_token_id, # Ensure EOS token is used
|
115 |
-
pad_token_id=tokenizer.pad_token_id, # Ensure padding token is used
|
116 |
-
use_cache=True,
|
117 |
-
do_sample = True,
|
118 |
-
temperature = 0.1,
|
119 |
-
top_p=1)
|
120 |
-
|
121 |
-
# Decode the generated tokens into a string
|
122 |
-
output_string = tokenizer.batch_decode(outputs, skip_special_tokens=False)[0]
|
123 |
-
#print(output_string)
|
124 |
-
|
125 |
-
# Use a regular expression to extract the response part
|
126 |
-
try:
|
127 |
-
spl_word_1 = 'Response:\n'
|
128 |
-
res = output_string.split(spl_word_1, 1)
|
129 |
-
response = res[1]
|
130 |
-
translation = response.replace(EOS_TOKEN, '')
|
131 |
-
translations.append(translation)
|
132 |
-
|
133 |
-
except:
|
134 |
-
translation = ''
|
135 |
-
translations.append(translation)
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
print(translation)
|
140 |
-
```
|
141 |
|
|
|
142 |
|
143 |
## Training Details
|
144 |
|
145 |
### Training Data
|
146 |
|
147 |
-
|
148 |
|
|
|
149 |
|
150 |
### Training Procedure
|
151 |
|
|
|
|
|
152 |
#### Preprocessing [optional]
|
153 |
|
154 |
-
|
155 |
-
|
156 |
|
157 |
#### Training Hyperparameters
|
158 |
-
|
159 |
-
- **Epochs**: **3** total, with an **early stopping** criterion monitoring validation loss.
|
160 |
-
- **Batch Size**: **2, with 4 Gradient accumulation steps**
|
161 |
-
- **Learning Rate**: **2e-4**
|
162 |
-
- **Optimizer**: **AdamW** with a linear learning-rate scheduler and warm-up.
|
163 |
|
164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
|
166 |
## Evaluation
|
167 |
|
|
|
|
|
168 |
### Testing Data, Factors & Metrics
|
169 |
|
170 |
#### Testing Data
|
171 |
|
172 |
-
|
173 |
|
|
|
174 |
|
175 |
-
####
|
176 |
|
177 |
-
|
178 |
-
- **chrF**: **[49.2]**
|
179 |
-
- **BERTScore f1**: **[0.947]**
|
180 |
|
181 |
-
|
182 |
|
|
|
183 |
|
184 |
-
|
185 |
|
186 |
-
[
|
187 |
|
188 |
-
|
189 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
|
191 |
- PEFT 0.13.0
|
|
|
1 |
---
|
2 |
base_model: AI-Sweden-Models/gpt-sw3-1.3b
|
3 |
library_name: peft
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
|
12 |
## Model Details
|
13 |
|
14 |
+
### Model Description
|
15 |
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
|
|
|
|
|
|
|
|
|
|
17 |
|
|
|
18 |
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
## Uses
|
37 |
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
|
46 |
### Downstream Use [optional]
|
|
|
47 |
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
|
52 |
### Out-of-Scope Use
|
|
|
|
|
53 |
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
|
58 |
## Bias, Risks, and Limitations
|
|
|
|
|
59 |
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
|
70 |
## How to Get Started with the Model
|
71 |
|
72 |
+
Use the code below to get started with the model.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
+
[More Information Needed]
|
75 |
|
76 |
## Training Details
|
77 |
|
78 |
### Training Data
|
79 |
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
|
82 |
+
[More Information Needed]
|
83 |
|
84 |
### Training Procedure
|
85 |
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
#### Preprocessing [optional]
|
89 |
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
|
93 |
#### Training Hyperparameters
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
|
103 |
## Evaluation
|
104 |
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
### Testing Data, Factors & Metrics
|
108 |
|
109 |
#### Testing Data
|
110 |
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
|
113 |
+
[More Information Needed]
|
114 |
|
115 |
+
#### Factors
|
116 |
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
|
|
|
|
118 |
|
119 |
+
[More Information Needed]
|
120 |
|
121 |
+
#### Metrics
|
122 |
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
|
125 |
+
[More Information Needed]
|
126 |
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
|
202 |
- PEFT 0.13.0
|
adapter_model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 50356480
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5783e5a184d9b8f7023f3e4db8b2b04f27f841ebb6e0fdfa51a0d01da07a1a6d
|
3 |
size 50356480
|
optimizer.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 100824826
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:63cdf40aeb5a038f7bd421d20503a1f69af9749eeddba3ea151aebd2b531031e
|
3 |
size 100824826
|
rng_state.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 14244
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:880214e1352dcb7ff1a0ff190ed5280bbc6048dfcec536cb051dc547e5cda625
|
3 |
size 14244
|
scheduler.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1064
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b3b726a4e5e68c38498cce3fc014e09726f8c59aa78874af5f176e1c33a9024a
|
3 |
size 1064
|
trainer_state.json
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
{
|
2 |
"best_metric": null,
|
3 |
"best_model_checkpoint": null,
|
4 |
-
"epoch":
|
5 |
"eval_steps": 500,
|
6 |
-
"global_step":
|
7 |
"is_hyper_param_search": false,
|
8 |
"is_local_process_zero": true,
|
9 |
"is_world_process_zero": true,
|
@@ -2415,6 +2415,1260 @@
|
|
2415 |
"eval_samples_per_second": 106.259,
|
2416 |
"eval_steps_per_second": 13.29,
|
2417 |
"step": 28000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2418 |
}
|
2419 |
],
|
2420 |
"logging_steps": 100,
|
@@ -2429,12 +3683,12 @@
|
|
2429 |
"should_evaluate": false,
|
2430 |
"should_log": false,
|
2431 |
"should_save": true,
|
2432 |
-
"should_training_stop":
|
2433 |
},
|
2434 |
"attributes": {}
|
2435 |
}
|
2436 |
},
|
2437 |
-
"total_flos":
|
2438 |
"train_batch_size": 2,
|
2439 |
"trial_name": null,
|
2440 |
"trial_params": null
|
|
|
1 |
{
|
2 |
"best_metric": null,
|
3 |
"best_model_checkpoint": null,
|
4 |
+
"epoch": 2.999947295374291,
|
5 |
"eval_steps": 500,
|
6 |
+
"global_step": 42690,
|
7 |
"is_hyper_param_search": false,
|
8 |
"is_local_process_zero": true,
|
9 |
"is_world_process_zero": true,
|
|
|
2415 |
"eval_samples_per_second": 106.259,
|
2416 |
"eval_steps_per_second": 13.29,
|
2417 |
"step": 28000
|
2418 |
+
},
|
2419 |
+
{
|
2420 |
+
"epoch": 1.9746666432423887,
|
2421 |
+
"grad_norm": 0.7954403162002563,
|
2422 |
+
"learning_rate": 6.836125102495022e-05,
|
2423 |
+
"loss": 0.5698,
|
2424 |
+
"step": 28100
|
2425 |
+
},
|
2426 |
+
{
|
2427 |
+
"epoch": 1.9816939266702973,
|
2428 |
+
"grad_norm": 0.4845888316631317,
|
2429 |
+
"learning_rate": 6.789270235445707e-05,
|
2430 |
+
"loss": 0.5677,
|
2431 |
+
"step": 28200
|
2432 |
+
},
|
2433 |
+
{
|
2434 |
+
"epoch": 1.9887212100982063,
|
2435 |
+
"grad_norm": 0.7075939774513245,
|
2436 |
+
"learning_rate": 6.742415368396392e-05,
|
2437 |
+
"loss": 0.5736,
|
2438 |
+
"step": 28300
|
2439 |
+
},
|
2440 |
+
{
|
2441 |
+
"epoch": 1.9957484935261152,
|
2442 |
+
"grad_norm": 0.6423342823982239,
|
2443 |
+
"learning_rate": 6.695560501347079e-05,
|
2444 |
+
"loss": 0.5824,
|
2445 |
+
"step": 28400
|
2446 |
+
},
|
2447 |
+
{
|
2448 |
+
"epoch": 2.002775776954024,
|
2449 |
+
"grad_norm": 0.49882400035858154,
|
2450 |
+
"learning_rate": 6.648705634297762e-05,
|
2451 |
+
"loss": 0.5598,
|
2452 |
+
"step": 28500
|
2453 |
+
},
|
2454 |
+
{
|
2455 |
+
"epoch": 2.002775776954024,
|
2456 |
+
"eval_loss": 0.6018995642662048,
|
2457 |
+
"eval_runtime": 118.7564,
|
2458 |
+
"eval_samples_per_second": 106.512,
|
2459 |
+
"eval_steps_per_second": 13.321,
|
2460 |
+
"step": 28500
|
2461 |
+
},
|
2462 |
+
{
|
2463 |
+
"epoch": 2.009803060381933,
|
2464 |
+
"grad_norm": 0.6685127019882202,
|
2465 |
+
"learning_rate": 6.601850767248449e-05,
|
2466 |
+
"loss": 0.5498,
|
2467 |
+
"step": 28600
|
2468 |
+
},
|
2469 |
+
{
|
2470 |
+
"epoch": 2.0168303438098416,
|
2471 |
+
"grad_norm": 0.7776573896408081,
|
2472 |
+
"learning_rate": 6.554995900199134e-05,
|
2473 |
+
"loss": 0.541,
|
2474 |
+
"step": 28700
|
2475 |
+
},
|
2476 |
+
{
|
2477 |
+
"epoch": 2.0238576272377506,
|
2478 |
+
"grad_norm": 0.9224827885627747,
|
2479 |
+
"learning_rate": 6.508141033149819e-05,
|
2480 |
+
"loss": 0.5404,
|
2481 |
+
"step": 28800
|
2482 |
+
},
|
2483 |
+
{
|
2484 |
+
"epoch": 2.0308849106656592,
|
2485 |
+
"grad_norm": 0.6114927530288696,
|
2486 |
+
"learning_rate": 6.461286166100504e-05,
|
2487 |
+
"loss": 0.541,
|
2488 |
+
"step": 28900
|
2489 |
+
},
|
2490 |
+
{
|
2491 |
+
"epoch": 2.0379121940935683,
|
2492 |
+
"grad_norm": 0.6814767718315125,
|
2493 |
+
"learning_rate": 6.414431299051189e-05,
|
2494 |
+
"loss": 0.5397,
|
2495 |
+
"step": 29000
|
2496 |
+
},
|
2497 |
+
{
|
2498 |
+
"epoch": 2.0379121940935683,
|
2499 |
+
"eval_loss": 0.6046204566955566,
|
2500 |
+
"eval_runtime": 118.9324,
|
2501 |
+
"eval_samples_per_second": 106.355,
|
2502 |
+
"eval_steps_per_second": 13.302,
|
2503 |
+
"step": 29000
|
2504 |
+
},
|
2505 |
+
{
|
2506 |
+
"epoch": 2.0449394775214773,
|
2507 |
+
"grad_norm": 0.8734195232391357,
|
2508 |
+
"learning_rate": 6.367576432001875e-05,
|
2509 |
+
"loss": 0.5347,
|
2510 |
+
"step": 29100
|
2511 |
+
},
|
2512 |
+
{
|
2513 |
+
"epoch": 2.051966760949386,
|
2514 |
+
"grad_norm": 0.7100592255592346,
|
2515 |
+
"learning_rate": 6.32072156495256e-05,
|
2516 |
+
"loss": 0.5349,
|
2517 |
+
"step": 29200
|
2518 |
+
},
|
2519 |
+
{
|
2520 |
+
"epoch": 2.058994044377295,
|
2521 |
+
"grad_norm": 0.5094404816627502,
|
2522 |
+
"learning_rate": 6.273866697903245e-05,
|
2523 |
+
"loss": 0.5438,
|
2524 |
+
"step": 29300
|
2525 |
+
},
|
2526 |
+
{
|
2527 |
+
"epoch": 2.0660213278052035,
|
2528 |
+
"grad_norm": 0.5938568711280823,
|
2529 |
+
"learning_rate": 6.22701183085393e-05,
|
2530 |
+
"loss": 0.5367,
|
2531 |
+
"step": 29400
|
2532 |
+
},
|
2533 |
+
{
|
2534 |
+
"epoch": 2.0730486112331126,
|
2535 |
+
"grad_norm": 0.6052954196929932,
|
2536 |
+
"learning_rate": 6.180156963804615e-05,
|
2537 |
+
"loss": 0.533,
|
2538 |
+
"step": 29500
|
2539 |
+
},
|
2540 |
+
{
|
2541 |
+
"epoch": 2.0730486112331126,
|
2542 |
+
"eval_loss": 0.6042247414588928,
|
2543 |
+
"eval_runtime": 119.3016,
|
2544 |
+
"eval_samples_per_second": 106.025,
|
2545 |
+
"eval_steps_per_second": 13.261,
|
2546 |
+
"step": 29500
|
2547 |
+
},
|
2548 |
+
{
|
2549 |
+
"epoch": 2.0800758946610216,
|
2550 |
+
"grad_norm": 0.8204342126846313,
|
2551 |
+
"learning_rate": 6.133302096755302e-05,
|
2552 |
+
"loss": 0.5525,
|
2553 |
+
"step": 29600
|
2554 |
+
},
|
2555 |
+
{
|
2556 |
+
"epoch": 2.08710317808893,
|
2557 |
+
"grad_norm": 0.8169859647750854,
|
2558 |
+
"learning_rate": 6.086447229705986e-05,
|
2559 |
+
"loss": 0.5412,
|
2560 |
+
"step": 29700
|
2561 |
+
},
|
2562 |
+
{
|
2563 |
+
"epoch": 2.0941304615168392,
|
2564 |
+
"grad_norm": 0.6919510960578918,
|
2565 |
+
"learning_rate": 6.039592362656671e-05,
|
2566 |
+
"loss": 0.5395,
|
2567 |
+
"step": 29800
|
2568 |
+
},
|
2569 |
+
{
|
2570 |
+
"epoch": 2.101157744944748,
|
2571 |
+
"grad_norm": 0.6376796364784241,
|
2572 |
+
"learning_rate": 5.9927374956073566e-05,
|
2573 |
+
"loss": 0.5296,
|
2574 |
+
"step": 29900
|
2575 |
+
},
|
2576 |
+
{
|
2577 |
+
"epoch": 2.108185028372657,
|
2578 |
+
"grad_norm": 0.6056246161460876,
|
2579 |
+
"learning_rate": 5.9458826285580416e-05,
|
2580 |
+
"loss": 0.5257,
|
2581 |
+
"step": 30000
|
2582 |
+
},
|
2583 |
+
{
|
2584 |
+
"epoch": 2.108185028372657,
|
2585 |
+
"eval_loss": 0.6040454506874084,
|
2586 |
+
"eval_runtime": 119.4721,
|
2587 |
+
"eval_samples_per_second": 105.874,
|
2588 |
+
"eval_steps_per_second": 13.242,
|
2589 |
+
"step": 30000
|
2590 |
+
},
|
2591 |
+
{
|
2592 |
+
"epoch": 2.115212311800566,
|
2593 |
+
"grad_norm": 0.7951282858848572,
|
2594 |
+
"learning_rate": 5.899027761508727e-05,
|
2595 |
+
"loss": 0.5231,
|
2596 |
+
"step": 30100
|
2597 |
+
},
|
2598 |
+
{
|
2599 |
+
"epoch": 2.1222395952284745,
|
2600 |
+
"grad_norm": 0.7288519144058228,
|
2601 |
+
"learning_rate": 5.852172894459412e-05,
|
2602 |
+
"loss": 0.533,
|
2603 |
+
"step": 30200
|
2604 |
+
},
|
2605 |
+
{
|
2606 |
+
"epoch": 2.1292668786563835,
|
2607 |
+
"grad_norm": 0.62901371717453,
|
2608 |
+
"learning_rate": 5.8053180274100973e-05,
|
2609 |
+
"loss": 0.5475,
|
2610 |
+
"step": 30300
|
2611 |
+
},
|
2612 |
+
{
|
2613 |
+
"epoch": 2.136294162084292,
|
2614 |
+
"grad_norm": 0.7269171476364136,
|
2615 |
+
"learning_rate": 5.758463160360783e-05,
|
2616 |
+
"loss": 0.5469,
|
2617 |
+
"step": 30400
|
2618 |
+
},
|
2619 |
+
{
|
2620 |
+
"epoch": 2.143321445512201,
|
2621 |
+
"grad_norm": 0.8678474426269531,
|
2622 |
+
"learning_rate": 5.711608293311468e-05,
|
2623 |
+
"loss": 0.5396,
|
2624 |
+
"step": 30500
|
2625 |
+
},
|
2626 |
+
{
|
2627 |
+
"epoch": 2.143321445512201,
|
2628 |
+
"eval_loss": 0.6033341884613037,
|
2629 |
+
"eval_runtime": 119.4525,
|
2630 |
+
"eval_samples_per_second": 105.891,
|
2631 |
+
"eval_steps_per_second": 13.244,
|
2632 |
+
"step": 30500
|
2633 |
+
},
|
2634 |
+
{
|
2635 |
+
"epoch": 2.15034872894011,
|
2636 |
+
"grad_norm": 0.5461506843566895,
|
2637 |
+
"learning_rate": 5.664753426262154e-05,
|
2638 |
+
"loss": 0.5543,
|
2639 |
+
"step": 30600
|
2640 |
+
},
|
2641 |
+
{
|
2642 |
+
"epoch": 2.157376012368019,
|
2643 |
+
"grad_norm": 0.6282551884651184,
|
2644 |
+
"learning_rate": 5.617898559212839e-05,
|
2645 |
+
"loss": 0.519,
|
2646 |
+
"step": 30700
|
2647 |
+
},
|
2648 |
+
{
|
2649 |
+
"epoch": 2.164403295795928,
|
2650 |
+
"grad_norm": 0.5805559158325195,
|
2651 |
+
"learning_rate": 5.571043692163523e-05,
|
2652 |
+
"loss": 0.5359,
|
2653 |
+
"step": 30800
|
2654 |
+
},
|
2655 |
+
{
|
2656 |
+
"epoch": 2.1714305792238364,
|
2657 |
+
"grad_norm": 0.7047603726387024,
|
2658 |
+
"learning_rate": 5.5241888251142095e-05,
|
2659 |
+
"loss": 0.5244,
|
2660 |
+
"step": 30900
|
2661 |
+
},
|
2662 |
+
{
|
2663 |
+
"epoch": 2.1784578626517455,
|
2664 |
+
"grad_norm": 1.0538957118988037,
|
2665 |
+
"learning_rate": 5.477333958064894e-05,
|
2666 |
+
"loss": 0.5284,
|
2667 |
+
"step": 31000
|
2668 |
+
},
|
2669 |
+
{
|
2670 |
+
"epoch": 2.1784578626517455,
|
2671 |
+
"eval_loss": 0.6041498780250549,
|
2672 |
+
"eval_runtime": 119.3834,
|
2673 |
+
"eval_samples_per_second": 105.953,
|
2674 |
+
"eval_steps_per_second": 13.251,
|
2675 |
+
"step": 31000
|
2676 |
+
},
|
2677 |
+
{
|
2678 |
+
"epoch": 2.185485146079654,
|
2679 |
+
"grad_norm": 0.7913850545883179,
|
2680 |
+
"learning_rate": 5.43047909101558e-05,
|
2681 |
+
"loss": 0.5267,
|
2682 |
+
"step": 31100
|
2683 |
+
},
|
2684 |
+
{
|
2685 |
+
"epoch": 2.192512429507563,
|
2686 |
+
"grad_norm": 0.5944955348968506,
|
2687 |
+
"learning_rate": 5.3836242239662646e-05,
|
2688 |
+
"loss": 0.5359,
|
2689 |
+
"step": 31200
|
2690 |
+
},
|
2691 |
+
{
|
2692 |
+
"epoch": 2.199539712935472,
|
2693 |
+
"grad_norm": 0.8068099617958069,
|
2694 |
+
"learning_rate": 5.3367693569169496e-05,
|
2695 |
+
"loss": 0.5449,
|
2696 |
+
"step": 31300
|
2697 |
+
},
|
2698 |
+
{
|
2699 |
+
"epoch": 2.2065669963633807,
|
2700 |
+
"grad_norm": 0.5993140935897827,
|
2701 |
+
"learning_rate": 5.289914489867635e-05,
|
2702 |
+
"loss": 0.5384,
|
2703 |
+
"step": 31400
|
2704 |
+
},
|
2705 |
+
{
|
2706 |
+
"epoch": 2.2135942797912898,
|
2707 |
+
"grad_norm": 0.6852918267250061,
|
2708 |
+
"learning_rate": 5.24305962281832e-05,
|
2709 |
+
"loss": 0.5448,
|
2710 |
+
"step": 31500
|
2711 |
+
},
|
2712 |
+
{
|
2713 |
+
"epoch": 2.2135942797912898,
|
2714 |
+
"eval_loss": 0.6034653782844543,
|
2715 |
+
"eval_runtime": 119.4509,
|
2716 |
+
"eval_samples_per_second": 105.893,
|
2717 |
+
"eval_steps_per_second": 13.244,
|
2718 |
+
"step": 31500
|
2719 |
+
},
|
2720 |
+
{
|
2721 |
+
"epoch": 2.2206215632191983,
|
2722 |
+
"grad_norm": 0.9072486758232117,
|
2723 |
+
"learning_rate": 5.1962047557690054e-05,
|
2724 |
+
"loss": 0.5392,
|
2725 |
+
"step": 31600
|
2726 |
+
},
|
2727 |
+
{
|
2728 |
+
"epoch": 2.2276488466471074,
|
2729 |
+
"grad_norm": 0.5671890377998352,
|
2730 |
+
"learning_rate": 5.149349888719691e-05,
|
2731 |
+
"loss": 0.5366,
|
2732 |
+
"step": 31700
|
2733 |
+
},
|
2734 |
+
{
|
2735 |
+
"epoch": 2.2346761300750164,
|
2736 |
+
"grad_norm": 0.9552319049835205,
|
2737 |
+
"learning_rate": 5.102495021670376e-05,
|
2738 |
+
"loss": 0.555,
|
2739 |
+
"step": 31800
|
2740 |
+
},
|
2741 |
+
{
|
2742 |
+
"epoch": 2.241703413502925,
|
2743 |
+
"grad_norm": 0.9220768809318542,
|
2744 |
+
"learning_rate": 5.055640154621062e-05,
|
2745 |
+
"loss": 0.5323,
|
2746 |
+
"step": 31900
|
2747 |
+
},
|
2748 |
+
{
|
2749 |
+
"epoch": 2.248730696930834,
|
2750 |
+
"grad_norm": 0.7823670506477356,
|
2751 |
+
"learning_rate": 5.008785287571747e-05,
|
2752 |
+
"loss": 0.5484,
|
2753 |
+
"step": 32000
|
2754 |
+
},
|
2755 |
+
{
|
2756 |
+
"epoch": 2.248730696930834,
|
2757 |
+
"eval_loss": 0.602741539478302,
|
2758 |
+
"eval_runtime": 119.5139,
|
2759 |
+
"eval_samples_per_second": 105.837,
|
2760 |
+
"eval_steps_per_second": 13.237,
|
2761 |
+
"step": 32000
|
2762 |
+
},
|
2763 |
+
{
|
2764 |
+
"epoch": 2.2557579803587426,
|
2765 |
+
"grad_norm": 0.8530369400978088,
|
2766 |
+
"learning_rate": 4.961930420522432e-05,
|
2767 |
+
"loss": 0.5443,
|
2768 |
+
"step": 32100
|
2769 |
+
},
|
2770 |
+
{
|
2771 |
+
"epoch": 2.2627852637866517,
|
2772 |
+
"grad_norm": 0.8256222605705261,
|
2773 |
+
"learning_rate": 4.9150755534731175e-05,
|
2774 |
+
"loss": 0.5371,
|
2775 |
+
"step": 32200
|
2776 |
+
},
|
2777 |
+
{
|
2778 |
+
"epoch": 2.2698125472145607,
|
2779 |
+
"grad_norm": 0.8003319501876831,
|
2780 |
+
"learning_rate": 4.8682206864238025e-05,
|
2781 |
+
"loss": 0.5472,
|
2782 |
+
"step": 32300
|
2783 |
+
},
|
2784 |
+
{
|
2785 |
+
"epoch": 2.2768398306424693,
|
2786 |
+
"grad_norm": 0.6615211367607117,
|
2787 |
+
"learning_rate": 4.8213658193744876e-05,
|
2788 |
+
"loss": 0.5349,
|
2789 |
+
"step": 32400
|
2790 |
+
},
|
2791 |
+
{
|
2792 |
+
"epoch": 2.2838671140703783,
|
2793 |
+
"grad_norm": 0.7718948125839233,
|
2794 |
+
"learning_rate": 4.774510952325173e-05,
|
2795 |
+
"loss": 0.5253,
|
2796 |
+
"step": 32500
|
2797 |
+
},
|
2798 |
+
{
|
2799 |
+
"epoch": 2.2838671140703783,
|
2800 |
+
"eval_loss": 0.6034336090087891,
|
2801 |
+
"eval_runtime": 119.3326,
|
2802 |
+
"eval_samples_per_second": 105.998,
|
2803 |
+
"eval_steps_per_second": 13.257,
|
2804 |
+
"step": 32500
|
2805 |
+
},
|
2806 |
+
{
|
2807 |
+
"epoch": 2.290894397498287,
|
2808 |
+
"grad_norm": 0.6703356504440308,
|
2809 |
+
"learning_rate": 4.727656085275858e-05,
|
2810 |
+
"loss": 0.5356,
|
2811 |
+
"step": 32600
|
2812 |
+
},
|
2813 |
+
{
|
2814 |
+
"epoch": 2.297921680926196,
|
2815 |
+
"grad_norm": 0.6417832970619202,
|
2816 |
+
"learning_rate": 4.680801218226544e-05,
|
2817 |
+
"loss": 0.5456,
|
2818 |
+
"step": 32700
|
2819 |
+
},
|
2820 |
+
{
|
2821 |
+
"epoch": 2.3049489643541046,
|
2822 |
+
"grad_norm": 0.6749237775802612,
|
2823 |
+
"learning_rate": 4.633946351177228e-05,
|
2824 |
+
"loss": 0.5374,
|
2825 |
+
"step": 32800
|
2826 |
+
},
|
2827 |
+
{
|
2828 |
+
"epoch": 2.3119762477820136,
|
2829 |
+
"grad_norm": 0.6223445534706116,
|
2830 |
+
"learning_rate": 4.587091484127914e-05,
|
2831 |
+
"loss": 0.5254,
|
2832 |
+
"step": 32900
|
2833 |
+
},
|
2834 |
+
{
|
2835 |
+
"epoch": 2.3190035312099226,
|
2836 |
+
"grad_norm": 0.6455600261688232,
|
2837 |
+
"learning_rate": 4.540236617078599e-05,
|
2838 |
+
"loss": 0.5322,
|
2839 |
+
"step": 33000
|
2840 |
+
},
|
2841 |
+
{
|
2842 |
+
"epoch": 2.3190035312099226,
|
2843 |
+
"eval_loss": 0.602424144744873,
|
2844 |
+
"eval_runtime": 119.6802,
|
2845 |
+
"eval_samples_per_second": 105.69,
|
2846 |
+
"eval_steps_per_second": 13.219,
|
2847 |
+
"step": 33000
|
2848 |
+
},
|
2849 |
+
{
|
2850 |
+
"epoch": 2.3260308146378312,
|
2851 |
+
"grad_norm": 0.6882891058921814,
|
2852 |
+
"learning_rate": 4.493381750029285e-05,
|
2853 |
+
"loss": 0.5406,
|
2854 |
+
"step": 33100
|
2855 |
+
},
|
2856 |
+
{
|
2857 |
+
"epoch": 2.3330580980657403,
|
2858 |
+
"grad_norm": 0.7169196605682373,
|
2859 |
+
"learning_rate": 4.44652688297997e-05,
|
2860 |
+
"loss": 0.5367,
|
2861 |
+
"step": 33200
|
2862 |
+
},
|
2863 |
+
{
|
2864 |
+
"epoch": 2.3400853814936493,
|
2865 |
+
"grad_norm": 0.6603942513465881,
|
2866 |
+
"learning_rate": 4.399672015930655e-05,
|
2867 |
+
"loss": 0.5315,
|
2868 |
+
"step": 33300
|
2869 |
+
},
|
2870 |
+
{
|
2871 |
+
"epoch": 2.347112664921558,
|
2872 |
+
"grad_norm": 0.7974775433540344,
|
2873 |
+
"learning_rate": 4.3528171488813405e-05,
|
2874 |
+
"loss": 0.5438,
|
2875 |
+
"step": 33400
|
2876 |
+
},
|
2877 |
+
{
|
2878 |
+
"epoch": 2.354139948349467,
|
2879 |
+
"grad_norm": 0.7672884464263916,
|
2880 |
+
"learning_rate": 4.3059622818320255e-05,
|
2881 |
+
"loss": 0.5583,
|
2882 |
+
"step": 33500
|
2883 |
+
},
|
2884 |
+
{
|
2885 |
+
"epoch": 2.354139948349467,
|
2886 |
+
"eval_loss": 0.6008437871932983,
|
2887 |
+
"eval_runtime": 119.0367,
|
2888 |
+
"eval_samples_per_second": 106.261,
|
2889 |
+
"eval_steps_per_second": 13.29,
|
2890 |
+
"step": 33500
|
2891 |
+
},
|
2892 |
+
{
|
2893 |
+
"epoch": 2.3611672317773755,
|
2894 |
+
"grad_norm": 0.7062329649925232,
|
2895 |
+
"learning_rate": 4.259107414782711e-05,
|
2896 |
+
"loss": 0.5548,
|
2897 |
+
"step": 33600
|
2898 |
+
},
|
2899 |
+
{
|
2900 |
+
"epoch": 2.3681945152052846,
|
2901 |
+
"grad_norm": 0.754173219203949,
|
2902 |
+
"learning_rate": 4.212252547733396e-05,
|
2903 |
+
"loss": 0.5276,
|
2904 |
+
"step": 33700
|
2905 |
+
},
|
2906 |
+
{
|
2907 |
+
"epoch": 2.375221798633193,
|
2908 |
+
"grad_norm": 0.7143212556838989,
|
2909 |
+
"learning_rate": 4.165397680684081e-05,
|
2910 |
+
"loss": 0.5413,
|
2911 |
+
"step": 33800
|
2912 |
+
},
|
2913 |
+
{
|
2914 |
+
"epoch": 2.382249082061102,
|
2915 |
+
"grad_norm": 0.8082584142684937,
|
2916 |
+
"learning_rate": 4.118542813634766e-05,
|
2917 |
+
"loss": 0.534,
|
2918 |
+
"step": 33900
|
2919 |
+
},
|
2920 |
+
{
|
2921 |
+
"epoch": 2.3892763654890112,
|
2922 |
+
"grad_norm": 0.7493578791618347,
|
2923 |
+
"learning_rate": 4.071687946585452e-05,
|
2924 |
+
"loss": 0.5373,
|
2925 |
+
"step": 34000
|
2926 |
+
},
|
2927 |
+
{
|
2928 |
+
"epoch": 2.3892763654890112,
|
2929 |
+
"eval_loss": 0.6015102863311768,
|
2930 |
+
"eval_runtime": 119.2005,
|
2931 |
+
"eval_samples_per_second": 106.115,
|
2932 |
+
"eval_steps_per_second": 13.272,
|
2933 |
+
"step": 34000
|
2934 |
+
},
|
2935 |
+
{
|
2936 |
+
"epoch": 2.39630364891692,
|
2937 |
+
"grad_norm": 0.9309408068656921,
|
2938 |
+
"learning_rate": 4.024833079536137e-05,
|
2939 |
+
"loss": 0.5464,
|
2940 |
+
"step": 34100
|
2941 |
+
},
|
2942 |
+
{
|
2943 |
+
"epoch": 2.403330932344829,
|
2944 |
+
"grad_norm": 0.6309605240821838,
|
2945 |
+
"learning_rate": 3.977978212486822e-05,
|
2946 |
+
"loss": 0.5439,
|
2947 |
+
"step": 34200
|
2948 |
+
},
|
2949 |
+
{
|
2950 |
+
"epoch": 2.410358215772738,
|
2951 |
+
"grad_norm": 0.6428382992744446,
|
2952 |
+
"learning_rate": 3.931123345437507e-05,
|
2953 |
+
"loss": 0.5412,
|
2954 |
+
"step": 34300
|
2955 |
+
},
|
2956 |
+
{
|
2957 |
+
"epoch": 2.4173854992006465,
|
2958 |
+
"grad_norm": 0.9063606262207031,
|
2959 |
+
"learning_rate": 3.884268478388193e-05,
|
2960 |
+
"loss": 0.5477,
|
2961 |
+
"step": 34400
|
2962 |
+
},
|
2963 |
+
{
|
2964 |
+
"epoch": 2.4244127826285555,
|
2965 |
+
"grad_norm": 0.7051374316215515,
|
2966 |
+
"learning_rate": 3.837413611338878e-05,
|
2967 |
+
"loss": 0.5351,
|
2968 |
+
"step": 34500
|
2969 |
+
},
|
2970 |
+
{
|
2971 |
+
"epoch": 2.4244127826285555,
|
2972 |
+
"eval_loss": 0.6011614203453064,
|
2973 |
+
"eval_runtime": 119.6428,
|
2974 |
+
"eval_samples_per_second": 105.723,
|
2975 |
+
"eval_steps_per_second": 13.223,
|
2976 |
+
"step": 34500
|
2977 |
+
},
|
2978 |
+
{
|
2979 |
+
"epoch": 2.431440066056464,
|
2980 |
+
"grad_norm": 0.7466573119163513,
|
2981 |
+
"learning_rate": 3.7905587442895635e-05,
|
2982 |
+
"loss": 0.5525,
|
2983 |
+
"step": 34600
|
2984 |
+
},
|
2985 |
+
{
|
2986 |
+
"epoch": 2.438467349484373,
|
2987 |
+
"grad_norm": 0.8113718628883362,
|
2988 |
+
"learning_rate": 3.7437038772402485e-05,
|
2989 |
+
"loss": 0.553,
|
2990 |
+
"step": 34700
|
2991 |
+
},
|
2992 |
+
{
|
2993 |
+
"epoch": 2.4454946329122818,
|
2994 |
+
"grad_norm": 0.5469939112663269,
|
2995 |
+
"learning_rate": 3.6968490101909335e-05,
|
2996 |
+
"loss": 0.5438,
|
2997 |
+
"step": 34800
|
2998 |
+
},
|
2999 |
+
{
|
3000 |
+
"epoch": 2.452521916340191,
|
3001 |
+
"grad_norm": 0.6911020278930664,
|
3002 |
+
"learning_rate": 3.649994143141619e-05,
|
3003 |
+
"loss": 0.5349,
|
3004 |
+
"step": 34900
|
3005 |
+
},
|
3006 |
+
{
|
3007 |
+
"epoch": 2.4595491997681,
|
3008 |
+
"grad_norm": 0.7164533734321594,
|
3009 |
+
"learning_rate": 3.603139276092304e-05,
|
3010 |
+
"loss": 0.5237,
|
3011 |
+
"step": 35000
|
3012 |
+
},
|
3013 |
+
{
|
3014 |
+
"epoch": 2.4595491997681,
|
3015 |
+
"eval_loss": 0.6016719937324524,
|
3016 |
+
"eval_runtime": 119.4046,
|
3017 |
+
"eval_samples_per_second": 105.934,
|
3018 |
+
"eval_steps_per_second": 13.249,
|
3019 |
+
"step": 35000
|
3020 |
+
},
|
3021 |
+
{
|
3022 |
+
"epoch": 2.4665764831960084,
|
3023 |
+
"grad_norm": 0.8674111366271973,
|
3024 |
+
"learning_rate": 3.55628440904299e-05,
|
3025 |
+
"loss": 0.5469,
|
3026 |
+
"step": 35100
|
3027 |
+
},
|
3028 |
+
{
|
3029 |
+
"epoch": 2.4736037666239175,
|
3030 |
+
"grad_norm": 0.9044885039329529,
|
3031 |
+
"learning_rate": 3.509429541993674e-05,
|
3032 |
+
"loss": 0.5445,
|
3033 |
+
"step": 35200
|
3034 |
+
},
|
3035 |
+
{
|
3036 |
+
"epoch": 2.480631050051826,
|
3037 |
+
"grad_norm": 0.7213521599769592,
|
3038 |
+
"learning_rate": 3.46257467494436e-05,
|
3039 |
+
"loss": 0.5136,
|
3040 |
+
"step": 35300
|
3041 |
+
},
|
3042 |
+
{
|
3043 |
+
"epoch": 2.487658333479735,
|
3044 |
+
"grad_norm": 0.6873759627342224,
|
3045 |
+
"learning_rate": 3.415719807895045e-05,
|
3046 |
+
"loss": 0.5362,
|
3047 |
+
"step": 35400
|
3048 |
+
},
|
3049 |
+
{
|
3050 |
+
"epoch": 2.494685616907644,
|
3051 |
+
"grad_norm": 0.6950516104698181,
|
3052 |
+
"learning_rate": 3.368864940845731e-05,
|
3053 |
+
"loss": 0.535,
|
3054 |
+
"step": 35500
|
3055 |
+
},
|
3056 |
+
{
|
3057 |
+
"epoch": 2.494685616907644,
|
3058 |
+
"eval_loss": 0.6001349091529846,
|
3059 |
+
"eval_runtime": 119.0417,
|
3060 |
+
"eval_samples_per_second": 106.257,
|
3061 |
+
"eval_steps_per_second": 13.289,
|
3062 |
+
"step": 35500
|
3063 |
+
},
|
3064 |
+
{
|
3065 |
+
"epoch": 2.5017129003355527,
|
3066 |
+
"grad_norm": 0.6840397715568542,
|
3067 |
+
"learning_rate": 3.322010073796416e-05,
|
3068 |
+
"loss": 0.5385,
|
3069 |
+
"step": 35600
|
3070 |
+
},
|
3071 |
+
{
|
3072 |
+
"epoch": 2.5087401837634618,
|
3073 |
+
"grad_norm": 0.5907210111618042,
|
3074 |
+
"learning_rate": 3.275155206747101e-05,
|
3075 |
+
"loss": 0.5429,
|
3076 |
+
"step": 35700
|
3077 |
+
},
|
3078 |
+
{
|
3079 |
+
"epoch": 2.5157674671913703,
|
3080 |
+
"grad_norm": 0.801002025604248,
|
3081 |
+
"learning_rate": 3.2283003396977865e-05,
|
3082 |
+
"loss": 0.5224,
|
3083 |
+
"step": 35800
|
3084 |
+
},
|
3085 |
+
{
|
3086 |
+
"epoch": 2.5227947506192794,
|
3087 |
+
"grad_norm": 0.7259572148323059,
|
3088 |
+
"learning_rate": 3.1814454726484715e-05,
|
3089 |
+
"loss": 0.5297,
|
3090 |
+
"step": 35900
|
3091 |
+
},
|
3092 |
+
{
|
3093 |
+
"epoch": 2.5298220340471884,
|
3094 |
+
"grad_norm": 0.6602583527565002,
|
3095 |
+
"learning_rate": 3.134590605599157e-05,
|
3096 |
+
"loss": 0.5496,
|
3097 |
+
"step": 36000
|
3098 |
+
},
|
3099 |
+
{
|
3100 |
+
"epoch": 2.5298220340471884,
|
3101 |
+
"eval_loss": 0.5990512371063232,
|
3102 |
+
"eval_runtime": 118.9771,
|
3103 |
+
"eval_samples_per_second": 106.315,
|
3104 |
+
"eval_steps_per_second": 13.297,
|
3105 |
+
"step": 36000
|
3106 |
+
},
|
3107 |
+
{
|
3108 |
+
"epoch": 2.536849317475097,
|
3109 |
+
"grad_norm": 0.6192248463630676,
|
3110 |
+
"learning_rate": 3.0877357385498415e-05,
|
3111 |
+
"loss": 0.5432,
|
3112 |
+
"step": 36100
|
3113 |
+
},
|
3114 |
+
{
|
3115 |
+
"epoch": 2.543876600903006,
|
3116 |
+
"grad_norm": 1.0253371000289917,
|
3117 |
+
"learning_rate": 3.0408808715005272e-05,
|
3118 |
+
"loss": 0.5254,
|
3119 |
+
"step": 36200
|
3120 |
+
},
|
3121 |
+
{
|
3122 |
+
"epoch": 2.5509038843309146,
|
3123 |
+
"grad_norm": 0.8612440228462219,
|
3124 |
+
"learning_rate": 2.9940260044512126e-05,
|
3125 |
+
"loss": 0.56,
|
3126 |
+
"step": 36300
|
3127 |
+
},
|
3128 |
+
{
|
3129 |
+
"epoch": 2.5579311677588237,
|
3130 |
+
"grad_norm": 0.5663143992424011,
|
3131 |
+
"learning_rate": 2.947171137401898e-05,
|
3132 |
+
"loss": 0.5329,
|
3133 |
+
"step": 36400
|
3134 |
+
},
|
3135 |
+
{
|
3136 |
+
"epoch": 2.5649584511867323,
|
3137 |
+
"grad_norm": 0.9142153263092041,
|
3138 |
+
"learning_rate": 2.9003162703525833e-05,
|
3139 |
+
"loss": 0.5384,
|
3140 |
+
"step": 36500
|
3141 |
+
},
|
3142 |
+
{
|
3143 |
+
"epoch": 2.5649584511867323,
|
3144 |
+
"eval_loss": 0.5994681715965271,
|
3145 |
+
"eval_runtime": 119.2506,
|
3146 |
+
"eval_samples_per_second": 106.071,
|
3147 |
+
"eval_steps_per_second": 13.266,
|
3148 |
+
"step": 36500
|
3149 |
+
},
|
3150 |
+
{
|
3151 |
+
"epoch": 2.5719857346146413,
|
3152 |
+
"grad_norm": 0.6240784525871277,
|
3153 |
+
"learning_rate": 2.853461403303268e-05,
|
3154 |
+
"loss": 0.5332,
|
3155 |
+
"step": 36600
|
3156 |
+
},
|
3157 |
+
{
|
3158 |
+
"epoch": 2.5790130180425503,
|
3159 |
+
"grad_norm": 0.7204896211624146,
|
3160 |
+
"learning_rate": 2.8066065362539534e-05,
|
3161 |
+
"loss": 0.534,
|
3162 |
+
"step": 36700
|
3163 |
+
},
|
3164 |
+
{
|
3165 |
+
"epoch": 2.586040301470459,
|
3166 |
+
"grad_norm": 0.8071198463439941,
|
3167 |
+
"learning_rate": 2.7597516692046387e-05,
|
3168 |
+
"loss": 0.533,
|
3169 |
+
"step": 36800
|
3170 |
+
},
|
3171 |
+
{
|
3172 |
+
"epoch": 2.593067584898368,
|
3173 |
+
"grad_norm": 0.5369657278060913,
|
3174 |
+
"learning_rate": 2.712896802155324e-05,
|
3175 |
+
"loss": 0.5325,
|
3176 |
+
"step": 36900
|
3177 |
+
},
|
3178 |
+
{
|
3179 |
+
"epoch": 2.600094868326277,
|
3180 |
+
"grad_norm": 0.8969751000404358,
|
3181 |
+
"learning_rate": 2.6660419351060095e-05,
|
3182 |
+
"loss": 0.5349,
|
3183 |
+
"step": 37000
|
3184 |
+
},
|
3185 |
+
{
|
3186 |
+
"epoch": 2.600094868326277,
|
3187 |
+
"eval_loss": 0.5992428064346313,
|
3188 |
+
"eval_runtime": 119.3558,
|
3189 |
+
"eval_samples_per_second": 105.977,
|
3190 |
+
"eval_steps_per_second": 13.254,
|
3191 |
+
"step": 37000
|
3192 |
+
},
|
3193 |
+
{
|
3194 |
+
"epoch": 2.6071221517541856,
|
3195 |
+
"grad_norm": 0.8350916504859924,
|
3196 |
+
"learning_rate": 2.6191870680566945e-05,
|
3197 |
+
"loss": 0.5388,
|
3198 |
+
"step": 37100
|
3199 |
+
},
|
3200 |
+
{
|
3201 |
+
"epoch": 2.6141494351820946,
|
3202 |
+
"grad_norm": 0.5793244242668152,
|
3203 |
+
"learning_rate": 2.57233220100738e-05,
|
3204 |
+
"loss": 0.5211,
|
3205 |
+
"step": 37200
|
3206 |
+
},
|
3207 |
+
{
|
3208 |
+
"epoch": 2.6211767186100032,
|
3209 |
+
"grad_norm": 0.6331949830055237,
|
3210 |
+
"learning_rate": 2.5254773339580652e-05,
|
3211 |
+
"loss": 0.5335,
|
3212 |
+
"step": 37300
|
3213 |
+
},
|
3214 |
+
{
|
3215 |
+
"epoch": 2.6282040020379123,
|
3216 |
+
"grad_norm": 0.799247145652771,
|
3217 |
+
"learning_rate": 2.4786224669087502e-05,
|
3218 |
+
"loss": 0.5474,
|
3219 |
+
"step": 37400
|
3220 |
+
},
|
3221 |
+
{
|
3222 |
+
"epoch": 2.635231285465821,
|
3223 |
+
"grad_norm": 0.7149389386177063,
|
3224 |
+
"learning_rate": 2.4317675998594356e-05,
|
3225 |
+
"loss": 0.5316,
|
3226 |
+
"step": 37500
|
3227 |
+
},
|
3228 |
+
{
|
3229 |
+
"epoch": 2.635231285465821,
|
3230 |
+
"eval_loss": 0.5990239977836609,
|
3231 |
+
"eval_runtime": 119.2093,
|
3232 |
+
"eval_samples_per_second": 106.107,
|
3233 |
+
"eval_steps_per_second": 13.271,
|
3234 |
+
"step": 37500
|
3235 |
+
},
|
3236 |
+
{
|
3237 |
+
"epoch": 2.64225856889373,
|
3238 |
+
"grad_norm": 0.6996687650680542,
|
3239 |
+
"learning_rate": 2.384912732810121e-05,
|
3240 |
+
"loss": 0.5244,
|
3241 |
+
"step": 37600
|
3242 |
+
},
|
3243 |
+
{
|
3244 |
+
"epoch": 2.649285852321639,
|
3245 |
+
"grad_norm": 0.6374346017837524,
|
3246 |
+
"learning_rate": 2.338057865760806e-05,
|
3247 |
+
"loss": 0.5221,
|
3248 |
+
"step": 37700
|
3249 |
+
},
|
3250 |
+
{
|
3251 |
+
"epoch": 2.6563131357495475,
|
3252 |
+
"grad_norm": 0.7678332328796387,
|
3253 |
+
"learning_rate": 2.2912029987114913e-05,
|
3254 |
+
"loss": 0.5251,
|
3255 |
+
"step": 37800
|
3256 |
+
},
|
3257 |
+
{
|
3258 |
+
"epoch": 2.6633404191774566,
|
3259 |
+
"grad_norm": 0.6463155150413513,
|
3260 |
+
"learning_rate": 2.2443481316621764e-05,
|
3261 |
+
"loss": 0.5343,
|
3262 |
+
"step": 37900
|
3263 |
+
},
|
3264 |
+
{
|
3265 |
+
"epoch": 2.6703677026053656,
|
3266 |
+
"grad_norm": 0.6788434386253357,
|
3267 |
+
"learning_rate": 2.1974932646128617e-05,
|
3268 |
+
"loss": 0.5276,
|
3269 |
+
"step": 38000
|
3270 |
+
},
|
3271 |
+
{
|
3272 |
+
"epoch": 2.6703677026053656,
|
3273 |
+
"eval_loss": 0.5986095070838928,
|
3274 |
+
"eval_runtime": 119.1797,
|
3275 |
+
"eval_samples_per_second": 106.134,
|
3276 |
+
"eval_steps_per_second": 13.274,
|
3277 |
+
"step": 38000
|
3278 |
+
},
|
3279 |
+
{
|
3280 |
+
"epoch": 2.677394986033274,
|
3281 |
+
"grad_norm": 0.7115055322647095,
|
3282 |
+
"learning_rate": 2.1506383975635467e-05,
|
3283 |
+
"loss": 0.5583,
|
3284 |
+
"step": 38100
|
3285 |
+
},
|
3286 |
+
{
|
3287 |
+
"epoch": 2.684422269461183,
|
3288 |
+
"grad_norm": 0.7007845044136047,
|
3289 |
+
"learning_rate": 2.103783530514232e-05,
|
3290 |
+
"loss": 0.5294,
|
3291 |
+
"step": 38200
|
3292 |
+
},
|
3293 |
+
{
|
3294 |
+
"epoch": 2.691449552889092,
|
3295 |
+
"grad_norm": 1.0714610815048218,
|
3296 |
+
"learning_rate": 2.0569286634649178e-05,
|
3297 |
+
"loss": 0.54,
|
3298 |
+
"step": 38300
|
3299 |
+
},
|
3300 |
+
{
|
3301 |
+
"epoch": 2.698476836317001,
|
3302 |
+
"grad_norm": 0.6736337542533875,
|
3303 |
+
"learning_rate": 2.0100737964156028e-05,
|
3304 |
+
"loss": 0.5343,
|
3305 |
+
"step": 38400
|
3306 |
+
},
|
3307 |
+
{
|
3308 |
+
"epoch": 2.7055041197449095,
|
3309 |
+
"grad_norm": 0.6769545078277588,
|
3310 |
+
"learning_rate": 1.9632189293662882e-05,
|
3311 |
+
"loss": 0.5406,
|
3312 |
+
"step": 38500
|
3313 |
+
},
|
3314 |
+
{
|
3315 |
+
"epoch": 2.7055041197449095,
|
3316 |
+
"eval_loss": 0.5980576276779175,
|
3317 |
+
"eval_runtime": 119.2056,
|
3318 |
+
"eval_samples_per_second": 106.111,
|
3319 |
+
"eval_steps_per_second": 13.271,
|
3320 |
+
"step": 38500
|
3321 |
+
},
|
3322 |
+
{
|
3323 |
+
"epoch": 2.7125314031728185,
|
3324 |
+
"grad_norm": 0.714820384979248,
|
3325 |
+
"learning_rate": 1.9163640623169732e-05,
|
3326 |
+
"loss": 0.5408,
|
3327 |
+
"step": 38600
|
3328 |
+
},
|
3329 |
+
{
|
3330 |
+
"epoch": 2.7195586866007275,
|
3331 |
+
"grad_norm": 0.5211949944496155,
|
3332 |
+
"learning_rate": 1.8695091952676586e-05,
|
3333 |
+
"loss": 0.5257,
|
3334 |
+
"step": 38700
|
3335 |
+
},
|
3336 |
+
{
|
3337 |
+
"epoch": 2.726585970028636,
|
3338 |
+
"grad_norm": 0.7966856360435486,
|
3339 |
+
"learning_rate": 1.8226543282183436e-05,
|
3340 |
+
"loss": 0.5381,
|
3341 |
+
"step": 38800
|
3342 |
+
},
|
3343 |
+
{
|
3344 |
+
"epoch": 2.733613253456545,
|
3345 |
+
"grad_norm": 0.7282027006149292,
|
3346 |
+
"learning_rate": 1.775799461169029e-05,
|
3347 |
+
"loss": 0.5415,
|
3348 |
+
"step": 38900
|
3349 |
+
},
|
3350 |
+
{
|
3351 |
+
"epoch": 2.7406405368844537,
|
3352 |
+
"grad_norm": 0.7190561890602112,
|
3353 |
+
"learning_rate": 1.7289445941197143e-05,
|
3354 |
+
"loss": 0.5436,
|
3355 |
+
"step": 39000
|
3356 |
+
},
|
3357 |
+
{
|
3358 |
+
"epoch": 2.7406405368844537,
|
3359 |
+
"eval_loss": 0.5981852412223816,
|
3360 |
+
"eval_runtime": 119.2717,
|
3361 |
+
"eval_samples_per_second": 106.052,
|
3362 |
+
"eval_steps_per_second": 13.264,
|
3363 |
+
"step": 39000
|
3364 |
+
},
|
3365 |
+
{
|
3366 |
+
"epoch": 2.747667820312363,
|
3367 |
+
"grad_norm": 0.6859644651412964,
|
3368 |
+
"learning_rate": 1.6820897270703993e-05,
|
3369 |
+
"loss": 0.5371,
|
3370 |
+
"step": 39100
|
3371 |
+
},
|
3372 |
+
{
|
3373 |
+
"epoch": 2.7546951037402714,
|
3374 |
+
"grad_norm": 0.6917553544044495,
|
3375 |
+
"learning_rate": 1.6352348600210847e-05,
|
3376 |
+
"loss": 0.5411,
|
3377 |
+
"step": 39200
|
3378 |
+
},
|
3379 |
+
{
|
3380 |
+
"epoch": 2.7617223871681804,
|
3381 |
+
"grad_norm": 0.5737515687942505,
|
3382 |
+
"learning_rate": 1.58837999297177e-05,
|
3383 |
+
"loss": 0.5244,
|
3384 |
+
"step": 39300
|
3385 |
+
},
|
3386 |
+
{
|
3387 |
+
"epoch": 2.7687496705960895,
|
3388 |
+
"grad_norm": 0.7747429013252258,
|
3389 |
+
"learning_rate": 1.5415251259224554e-05,
|
3390 |
+
"loss": 0.5452,
|
3391 |
+
"step": 39400
|
3392 |
+
},
|
3393 |
+
{
|
3394 |
+
"epoch": 2.775776954023998,
|
3395 |
+
"grad_norm": 0.6782782673835754,
|
3396 |
+
"learning_rate": 1.4946702588731405e-05,
|
3397 |
+
"loss": 0.5392,
|
3398 |
+
"step": 39500
|
3399 |
+
},
|
3400 |
+
{
|
3401 |
+
"epoch": 2.775776954023998,
|
3402 |
+
"eval_loss": 0.597685694694519,
|
3403 |
+
"eval_runtime": 119.3501,
|
3404 |
+
"eval_samples_per_second": 105.982,
|
3405 |
+
"eval_steps_per_second": 13.255,
|
3406 |
+
"step": 39500
|
3407 |
+
},
|
3408 |
+
{
|
3409 |
+
"epoch": 2.782804237451907,
|
3410 |
+
"grad_norm": 0.6675652265548706,
|
3411 |
+
"learning_rate": 1.4478153918238258e-05,
|
3412 |
+
"loss": 0.534,
|
3413 |
+
"step": 39600
|
3414 |
+
},
|
3415 |
+
{
|
3416 |
+
"epoch": 2.789831520879816,
|
3417 |
+
"grad_norm": 0.822902262210846,
|
3418 |
+
"learning_rate": 1.4009605247745112e-05,
|
3419 |
+
"loss": 0.5582,
|
3420 |
+
"step": 39700
|
3421 |
+
},
|
3422 |
+
{
|
3423 |
+
"epoch": 2.7968588043077247,
|
3424 |
+
"grad_norm": 0.6393033266067505,
|
3425 |
+
"learning_rate": 1.3541056577251962e-05,
|
3426 |
+
"loss": 0.5442,
|
3427 |
+
"step": 39800
|
3428 |
+
},
|
3429 |
+
{
|
3430 |
+
"epoch": 2.8038860877356337,
|
3431 |
+
"grad_norm": 0.744646430015564,
|
3432 |
+
"learning_rate": 1.3072507906758816e-05,
|
3433 |
+
"loss": 0.537,
|
3434 |
+
"step": 39900
|
3435 |
+
},
|
3436 |
+
{
|
3437 |
+
"epoch": 2.8109133711635423,
|
3438 |
+
"grad_norm": 0.5728178024291992,
|
3439 |
+
"learning_rate": 1.2603959236265666e-05,
|
3440 |
+
"loss": 0.5316,
|
3441 |
+
"step": 40000
|
3442 |
+
},
|
3443 |
+
{
|
3444 |
+
"epoch": 2.8109133711635423,
|
3445 |
+
"eval_loss": 0.5975730419158936,
|
3446 |
+
"eval_runtime": 119.1706,
|
3447 |
+
"eval_samples_per_second": 106.142,
|
3448 |
+
"eval_steps_per_second": 13.275,
|
3449 |
+
"step": 40000
|
3450 |
+
},
|
3451 |
+
{
|
3452 |
+
"epoch": 2.8179406545914514,
|
3453 |
+
"grad_norm": 0.6350817680358887,
|
3454 |
+
"learning_rate": 1.2135410565772521e-05,
|
3455 |
+
"loss": 0.5345,
|
3456 |
+
"step": 40100
|
3457 |
+
},
|
3458 |
+
{
|
3459 |
+
"epoch": 2.82496793801936,
|
3460 |
+
"grad_norm": 0.5875131487846375,
|
3461 |
+
"learning_rate": 1.1666861895279373e-05,
|
3462 |
+
"loss": 0.5336,
|
3463 |
+
"step": 40200
|
3464 |
+
},
|
3465 |
+
{
|
3466 |
+
"epoch": 2.831995221447269,
|
3467 |
+
"grad_norm": 0.7108073234558105,
|
3468 |
+
"learning_rate": 1.1198313224786225e-05,
|
3469 |
+
"loss": 0.5364,
|
3470 |
+
"step": 40300
|
3471 |
+
},
|
3472 |
+
{
|
3473 |
+
"epoch": 2.839022504875178,
|
3474 |
+
"grad_norm": 0.5973334312438965,
|
3475 |
+
"learning_rate": 1.0729764554293077e-05,
|
3476 |
+
"loss": 0.5468,
|
3477 |
+
"step": 40400
|
3478 |
+
},
|
3479 |
+
{
|
3480 |
+
"epoch": 2.8460497883030866,
|
3481 |
+
"grad_norm": 0.7775806784629822,
|
3482 |
+
"learning_rate": 1.026121588379993e-05,
|
3483 |
+
"loss": 0.5349,
|
3484 |
+
"step": 40500
|
3485 |
+
},
|
3486 |
+
{
|
3487 |
+
"epoch": 2.8460497883030866,
|
3488 |
+
"eval_loss": 0.5973463654518127,
|
3489 |
+
"eval_runtime": 119.0857,
|
3490 |
+
"eval_samples_per_second": 106.218,
|
3491 |
+
"eval_steps_per_second": 13.285,
|
3492 |
+
"step": 40500
|
3493 |
+
},
|
3494 |
+
{
|
3495 |
+
"epoch": 2.8530770717309957,
|
3496 |
+
"grad_norm": 0.6160515546798706,
|
3497 |
+
"learning_rate": 9.792667213306782e-06,
|
3498 |
+
"loss": 0.5317,
|
3499 |
+
"step": 40600
|
3500 |
+
},
|
3501 |
+
{
|
3502 |
+
"epoch": 2.8601043551589047,
|
3503 |
+
"grad_norm": 0.715397834777832,
|
3504 |
+
"learning_rate": 9.324118542813636e-06,
|
3505 |
+
"loss": 0.5119,
|
3506 |
+
"step": 40700
|
3507 |
+
},
|
3508 |
+
{
|
3509 |
+
"epoch": 2.8671316385868133,
|
3510 |
+
"grad_norm": 0.7450791001319885,
|
3511 |
+
"learning_rate": 8.855569872320488e-06,
|
3512 |
+
"loss": 0.5302,
|
3513 |
+
"step": 40800
|
3514 |
+
},
|
3515 |
+
{
|
3516 |
+
"epoch": 2.874158922014722,
|
3517 |
+
"grad_norm": 0.5536558628082275,
|
3518 |
+
"learning_rate": 8.38702120182734e-06,
|
3519 |
+
"loss": 0.5239,
|
3520 |
+
"step": 40900
|
3521 |
+
},
|
3522 |
+
{
|
3523 |
+
"epoch": 2.881186205442631,
|
3524 |
+
"grad_norm": 0.5844016075134277,
|
3525 |
+
"learning_rate": 7.918472531334192e-06,
|
3526 |
+
"loss": 0.5341,
|
3527 |
+
"step": 41000
|
3528 |
+
},
|
3529 |
+
{
|
3530 |
+
"epoch": 2.881186205442631,
|
3531 |
+
"eval_loss": 0.5972412824630737,
|
3532 |
+
"eval_runtime": 119.0402,
|
3533 |
+
"eval_samples_per_second": 106.258,
|
3534 |
+
"eval_steps_per_second": 13.29,
|
3535 |
+
"step": 41000
|
3536 |
+
},
|
3537 |
+
{
|
3538 |
+
"epoch": 2.88821348887054,
|
3539 |
+
"grad_norm": 0.566956639289856,
|
3540 |
+
"learning_rate": 7.449923860841045e-06,
|
3541 |
+
"loss": 0.5387,
|
3542 |
+
"step": 41100
|
3543 |
+
},
|
3544 |
+
{
|
3545 |
+
"epoch": 2.8952407722984486,
|
3546 |
+
"grad_norm": 0.6934293508529663,
|
3547 |
+
"learning_rate": 6.981375190347898e-06,
|
3548 |
+
"loss": 0.5185,
|
3549 |
+
"step": 41200
|
3550 |
+
},
|
3551 |
+
{
|
3552 |
+
"epoch": 2.9022680557263576,
|
3553 |
+
"grad_norm": 0.6890417337417603,
|
3554 |
+
"learning_rate": 6.51282651985475e-06,
|
3555 |
+
"loss": 0.5419,
|
3556 |
+
"step": 41300
|
3557 |
+
},
|
3558 |
+
{
|
3559 |
+
"epoch": 2.9092953391542666,
|
3560 |
+
"grad_norm": 0.8735133409500122,
|
3561 |
+
"learning_rate": 6.044277849361603e-06,
|
3562 |
+
"loss": 0.5314,
|
3563 |
+
"step": 41400
|
3564 |
+
},
|
3565 |
+
{
|
3566 |
+
"epoch": 2.9163226225821752,
|
3567 |
+
"grad_norm": 0.746161162853241,
|
3568 |
+
"learning_rate": 5.575729178868455e-06,
|
3569 |
+
"loss": 0.5208,
|
3570 |
+
"step": 41500
|
3571 |
+
},
|
3572 |
+
{
|
3573 |
+
"epoch": 2.9163226225821752,
|
3574 |
+
"eval_loss": 0.5972864031791687,
|
3575 |
+
"eval_runtime": 118.9512,
|
3576 |
+
"eval_samples_per_second": 106.338,
|
3577 |
+
"eval_steps_per_second": 13.3,
|
3578 |
+
"step": 41500
|
3579 |
+
},
|
3580 |
+
{
|
3581 |
+
"epoch": 2.9233499060100843,
|
3582 |
+
"grad_norm": 0.9560967683792114,
|
3583 |
+
"learning_rate": 5.107180508375308e-06,
|
3584 |
+
"loss": 0.5505,
|
3585 |
+
"step": 41600
|
3586 |
+
},
|
3587 |
+
{
|
3588 |
+
"epoch": 2.930377189437993,
|
3589 |
+
"grad_norm": 0.7499198317527771,
|
3590 |
+
"learning_rate": 4.63863183788216e-06,
|
3591 |
+
"loss": 0.5378,
|
3592 |
+
"step": 41700
|
3593 |
+
},
|
3594 |
+
{
|
3595 |
+
"epoch": 2.937404472865902,
|
3596 |
+
"grad_norm": 0.6939593553543091,
|
3597 |
+
"learning_rate": 4.170083167389012e-06,
|
3598 |
+
"loss": 0.5351,
|
3599 |
+
"step": 41800
|
3600 |
+
},
|
3601 |
+
{
|
3602 |
+
"epoch": 2.9444317562938105,
|
3603 |
+
"grad_norm": 0.6184145212173462,
|
3604 |
+
"learning_rate": 3.701534496895865e-06,
|
3605 |
+
"loss": 0.5171,
|
3606 |
+
"step": 41900
|
3607 |
+
},
|
3608 |
+
{
|
3609 |
+
"epoch": 2.9514590397217195,
|
3610 |
+
"grad_norm": 0.6636520624160767,
|
3611 |
+
"learning_rate": 3.232985826402718e-06,
|
3612 |
+
"loss": 0.53,
|
3613 |
+
"step": 42000
|
3614 |
+
},
|
3615 |
+
{
|
3616 |
+
"epoch": 2.9514590397217195,
|
3617 |
+
"eval_loss": 0.5971269607543945,
|
3618 |
+
"eval_runtime": 118.9184,
|
3619 |
+
"eval_samples_per_second": 106.367,
|
3620 |
+
"eval_steps_per_second": 13.303,
|
3621 |
+
"step": 42000
|
3622 |
+
},
|
3623 |
+
{
|
3624 |
+
"epoch": 2.9584863231496286,
|
3625 |
+
"grad_norm": 0.8458754420280457,
|
3626 |
+
"learning_rate": 2.76443715590957e-06,
|
3627 |
+
"loss": 0.5447,
|
3628 |
+
"step": 42100
|
3629 |
+
},
|
3630 |
+
{
|
3631 |
+
"epoch": 2.965513606577537,
|
3632 |
+
"grad_norm": 0.6426025032997131,
|
3633 |
+
"learning_rate": 2.295888485416423e-06,
|
3634 |
+
"loss": 0.5287,
|
3635 |
+
"step": 42200
|
3636 |
+
},
|
3637 |
+
{
|
3638 |
+
"epoch": 2.972540890005446,
|
3639 |
+
"grad_norm": 0.7159422039985657,
|
3640 |
+
"learning_rate": 1.827339814923275e-06,
|
3641 |
+
"loss": 0.5288,
|
3642 |
+
"step": 42300
|
3643 |
+
},
|
3644 |
+
{
|
3645 |
+
"epoch": 2.9795681734333552,
|
3646 |
+
"grad_norm": 0.6702597141265869,
|
3647 |
+
"learning_rate": 1.3587911444301279e-06,
|
3648 |
+
"loss": 0.5419,
|
3649 |
+
"step": 42400
|
3650 |
+
},
|
3651 |
+
{
|
3652 |
+
"epoch": 2.986595456861264,
|
3653 |
+
"grad_norm": 0.7953273057937622,
|
3654 |
+
"learning_rate": 8.902424739369803e-07,
|
3655 |
+
"loss": 0.5445,
|
3656 |
+
"step": 42500
|
3657 |
+
},
|
3658 |
+
{
|
3659 |
+
"epoch": 2.986595456861264,
|
3660 |
+
"eval_loss": 0.5969375371932983,
|
3661 |
+
"eval_runtime": 119.2187,
|
3662 |
+
"eval_samples_per_second": 106.099,
|
3663 |
+
"eval_steps_per_second": 13.27,
|
3664 |
+
"step": 42500
|
3665 |
+
},
|
3666 |
+
{
|
3667 |
+
"epoch": 2.993622740289173,
|
3668 |
+
"grad_norm": 0.5247675180435181,
|
3669 |
+
"learning_rate": 4.216938034438327e-07,
|
3670 |
+
"loss": 0.5485,
|
3671 |
+
"step": 42600
|
3672 |
}
|
3673 |
],
|
3674 |
"logging_steps": 100,
|
|
|
3683 |
"should_evaluate": false,
|
3684 |
"should_log": false,
|
3685 |
"should_save": true,
|
3686 |
+
"should_training_stop": true
|
3687 |
},
|
3688 |
"attributes": {}
|
3689 |
}
|
3690 |
},
|
3691 |
+
"total_flos": 1.4552903446892544e+17,
|
3692 |
"train_batch_size": 2,
|
3693 |
"trial_name": null,
|
3694 |
"trial_params": null
|