banghua commited on
Commit
cd4a339
·
1 Parent(s): 1823da8

Upload folder using huggingface_hub

Browse files
global_step3200/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e4e785e7e942b3fb42b8d7ad0cb953360504b45aa1a0381bca210774d9fc01a
3
+ size 744137424
global_step3200/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:340be1a110c271645322de37b89e2dbb0e97f7f6ad110dff395afe9a9d631ae2
3
+ size 744137104
global_step3200/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:28b681e5d3f192d69100fcfb42a3667922c39ca7974549abf7ac10e3426b6cca
3
+ size 744137424
global_step3200/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b940606922a4ff88ec136b5ec34012ca7df627a3843618c579de7092516cf8c0
3
+ size 744137424
global_step3200/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a61f61f7d4b5896d8cf5111b44c9fb841871ee4632f3fd73be64d1a94356bfa3
3
+ size 744137104
global_step3200/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca8a5b268565f4e501f3ad01a39aa9b62aae29a7a1c0ab116197023b9a54a3e1
3
+ size 744137680
global_step3200/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c1259802dfe6dd982eed881075308fa76a34d9965e2a192ebe61d7e53f808d3e
3
+ size 744136912
global_step3200/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:acb90e99ffe0233e03bf60c17d7b626b5a8cd8d8fa43e013964f146f672a2aba
3
+ size 744136720
global_step3200/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d163b5b9f444000cf76543f0b0344ae3392f5bd45460784b9c666b1eade0a6c
3
+ size 40230847859
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step3200
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b0f7557797ad7c07420fae53c38763a78f3e2bdfcb05f8a83a5149532adeb55
3
+ size 43313075312
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef181294409ae2aaf29fe19d73be43d564a63ce83de6221fc200bc6b51451132
3
+ size 15984
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f9b71e62a06a5a913a01f8788a3587ea4fb39ed8ac02d10a9b3ac00afbf5e941
3
+ size 15984
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84593df49deed8ea6e276d2e568ddbe29f0787275e99e8b328af045062baf0b4
3
+ size 15984
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a79a5528a33a87f3b0e2630e0ff3e747c0f45dbd9884b7df358f64263a644ed5
3
+ size 15984
rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:58423971253a2a3c9345aad38b2cacce29712907c341a776117df5d0d0c3133a
3
+ size 15984
rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:73271c3b15259d43f4636c021faa8ca99604b323d4ef20329b27264ab2e762f1
3
+ size 15984
rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:623169de882cf16bd4e3d95b1f28f95354331573d66a274969bfd324cc075874
3
+ size 15984
rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5131c69105f507a1d8c319021291bf883bb693f7a4f85e14ca31dac9ac82cf76
3
+ size 15984
trainer_state.json ADDED
@@ -0,0 +1,2229 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.1553535461425781,
3
+ "best_model_checkpoint": "rm-ckpt-reward-p100-w0.3-s0/checkpoint-3100",
4
+ "epoch": 1.940227934044617,
5
+ "eval_steps": 100,
6
+ "global_step": 3200,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 9.999999999999999e-05,
14
+ "loss": 1.395,
15
+ "step": 10
16
+ },
17
+ {
18
+ "epoch": 0.01,
19
+ "learning_rate": 0.0001,
20
+ "loss": 1.3157,
21
+ "step": 20
22
+ },
23
+ {
24
+ "epoch": 0.01,
25
+ "learning_rate": 0.0001,
26
+ "loss": 1.3105,
27
+ "step": 30
28
+ },
29
+ {
30
+ "epoch": 0.02,
31
+ "learning_rate": 0.0001,
32
+ "loss": 1.2784,
33
+ "step": 40
34
+ },
35
+ {
36
+ "epoch": 0.02,
37
+ "learning_rate": 0.0001,
38
+ "loss": 1.2898,
39
+ "step": 50
40
+ },
41
+ {
42
+ "epoch": 0.03,
43
+ "learning_rate": 0.0001,
44
+ "loss": 1.263,
45
+ "step": 60
46
+ },
47
+ {
48
+ "epoch": 0.03,
49
+ "learning_rate": 0.0001,
50
+ "loss": 1.2683,
51
+ "step": 70
52
+ },
53
+ {
54
+ "epoch": 0.04,
55
+ "learning_rate": 0.0001,
56
+ "loss": 1.2463,
57
+ "step": 80
58
+ },
59
+ {
60
+ "epoch": 0.04,
61
+ "learning_rate": 0.0001,
62
+ "loss": 1.2433,
63
+ "step": 90
64
+ },
65
+ {
66
+ "epoch": 0.04,
67
+ "learning_rate": 0.0001,
68
+ "loss": 1.2361,
69
+ "step": 100
70
+ },
71
+ {
72
+ "epoch": 0.04,
73
+ "eval_val_accuracy": 0.5835,
74
+ "eval_val_loss": 1.2417031526565552,
75
+ "eval_val_runtime": 655.2015,
76
+ "eval_val_samples_per_second": 1.526,
77
+ "eval_val_steps_per_second": 0.191,
78
+ "step": 100
79
+ },
80
+ {
81
+ "epoch": 0.05,
82
+ "learning_rate": 0.0001,
83
+ "loss": 1.2347,
84
+ "step": 110
85
+ },
86
+ {
87
+ "epoch": 0.05,
88
+ "learning_rate": 0.0001,
89
+ "loss": 1.2328,
90
+ "step": 120
91
+ },
92
+ {
93
+ "epoch": 0.06,
94
+ "learning_rate": 0.0001,
95
+ "loss": 1.2319,
96
+ "step": 130
97
+ },
98
+ {
99
+ "epoch": 0.06,
100
+ "learning_rate": 0.0001,
101
+ "loss": 1.2296,
102
+ "step": 140
103
+ },
104
+ {
105
+ "epoch": 0.07,
106
+ "learning_rate": 0.0001,
107
+ "loss": 1.2067,
108
+ "step": 150
109
+ },
110
+ {
111
+ "epoch": 0.07,
112
+ "learning_rate": 0.0001,
113
+ "loss": 1.2101,
114
+ "step": 160
115
+ },
116
+ {
117
+ "epoch": 0.07,
118
+ "learning_rate": 0.0001,
119
+ "loss": 1.2065,
120
+ "step": 170
121
+ },
122
+ {
123
+ "epoch": 0.08,
124
+ "learning_rate": 0.0001,
125
+ "loss": 1.2207,
126
+ "step": 180
127
+ },
128
+ {
129
+ "epoch": 0.08,
130
+ "learning_rate": 0.0001,
131
+ "loss": 1.2141,
132
+ "step": 190
133
+ },
134
+ {
135
+ "epoch": 0.09,
136
+ "learning_rate": 0.0001,
137
+ "loss": 1.2122,
138
+ "step": 200
139
+ },
140
+ {
141
+ "epoch": 0.09,
142
+ "eval_val_accuracy": 0.5943333333333334,
143
+ "eval_val_loss": 1.2143710851669312,
144
+ "eval_val_runtime": 655.5732,
145
+ "eval_val_samples_per_second": 1.525,
146
+ "eval_val_steps_per_second": 0.191,
147
+ "step": 200
148
+ },
149
+ {
150
+ "epoch": 0.1,
151
+ "learning_rate": 0.0001,
152
+ "loss": 1.2178,
153
+ "step": 210
154
+ },
155
+ {
156
+ "epoch": 0.1,
157
+ "learning_rate": 0.0001,
158
+ "loss": 1.2065,
159
+ "step": 220
160
+ },
161
+ {
162
+ "epoch": 0.11,
163
+ "learning_rate": 0.0001,
164
+ "loss": 1.2077,
165
+ "step": 230
166
+ },
167
+ {
168
+ "epoch": 0.11,
169
+ "learning_rate": 0.0001,
170
+ "loss": 1.2015,
171
+ "step": 240
172
+ },
173
+ {
174
+ "epoch": 0.12,
175
+ "learning_rate": 0.0001,
176
+ "loss": 1.2121,
177
+ "step": 250
178
+ },
179
+ {
180
+ "epoch": 0.12,
181
+ "learning_rate": 0.0001,
182
+ "loss": 1.1873,
183
+ "step": 260
184
+ },
185
+ {
186
+ "epoch": 0.13,
187
+ "learning_rate": 0.0001,
188
+ "loss": 1.2211,
189
+ "step": 270
190
+ },
191
+ {
192
+ "epoch": 0.13,
193
+ "learning_rate": 0.0001,
194
+ "loss": 1.2024,
195
+ "step": 280
196
+ },
197
+ {
198
+ "epoch": 0.13,
199
+ "learning_rate": 0.0001,
200
+ "loss": 1.2018,
201
+ "step": 290
202
+ },
203
+ {
204
+ "epoch": 0.14,
205
+ "learning_rate": 0.0001,
206
+ "loss": 1.1915,
207
+ "step": 300
208
+ },
209
+ {
210
+ "epoch": 0.14,
211
+ "eval_val_accuracy": 0.5968333333333333,
212
+ "eval_val_loss": 1.2014297246932983,
213
+ "eval_val_runtime": 654.9118,
214
+ "eval_val_samples_per_second": 1.527,
215
+ "eval_val_steps_per_second": 0.191,
216
+ "step": 300
217
+ },
218
+ {
219
+ "epoch": 0.14,
220
+ "learning_rate": 0.0001,
221
+ "loss": 1.187,
222
+ "step": 310
223
+ },
224
+ {
225
+ "epoch": 0.15,
226
+ "learning_rate": 0.0001,
227
+ "loss": 1.1846,
228
+ "step": 320
229
+ },
230
+ {
231
+ "epoch": 0.15,
232
+ "learning_rate": 0.0001,
233
+ "loss": 1.191,
234
+ "step": 330
235
+ },
236
+ {
237
+ "epoch": 0.16,
238
+ "learning_rate": 0.0001,
239
+ "loss": 1.1995,
240
+ "step": 340
241
+ },
242
+ {
243
+ "epoch": 0.16,
244
+ "learning_rate": 0.0001,
245
+ "loss": 1.2025,
246
+ "step": 350
247
+ },
248
+ {
249
+ "epoch": 0.17,
250
+ "learning_rate": 0.0001,
251
+ "loss": 1.1969,
252
+ "step": 360
253
+ },
254
+ {
255
+ "epoch": 0.17,
256
+ "learning_rate": 0.0001,
257
+ "loss": 1.1895,
258
+ "step": 370
259
+ },
260
+ {
261
+ "epoch": 0.18,
262
+ "learning_rate": 0.0001,
263
+ "loss": 1.1942,
264
+ "step": 380
265
+ },
266
+ {
267
+ "epoch": 0.18,
268
+ "learning_rate": 0.0001,
269
+ "loss": 1.1896,
270
+ "step": 390
271
+ },
272
+ {
273
+ "epoch": 0.19,
274
+ "learning_rate": 0.0001,
275
+ "loss": 1.2049,
276
+ "step": 400
277
+ },
278
+ {
279
+ "epoch": 0.19,
280
+ "eval_val_accuracy": 0.6015,
281
+ "eval_val_loss": 1.1935878992080688,
282
+ "eval_val_runtime": 655.3426,
283
+ "eval_val_samples_per_second": 1.526,
284
+ "eval_val_steps_per_second": 0.191,
285
+ "step": 400
286
+ },
287
+ {
288
+ "epoch": 0.19,
289
+ "learning_rate": 0.0001,
290
+ "loss": 1.1909,
291
+ "step": 410
292
+ },
293
+ {
294
+ "epoch": 0.2,
295
+ "learning_rate": 0.0001,
296
+ "loss": 1.2016,
297
+ "step": 420
298
+ },
299
+ {
300
+ "epoch": 0.2,
301
+ "learning_rate": 0.0001,
302
+ "loss": 1.1918,
303
+ "step": 430
304
+ },
305
+ {
306
+ "epoch": 0.2,
307
+ "learning_rate": 0.0001,
308
+ "loss": 1.1982,
309
+ "step": 440
310
+ },
311
+ {
312
+ "epoch": 0.21,
313
+ "learning_rate": 0.0001,
314
+ "loss": 1.1955,
315
+ "step": 450
316
+ },
317
+ {
318
+ "epoch": 0.21,
319
+ "learning_rate": 0.0001,
320
+ "loss": 1.1949,
321
+ "step": 460
322
+ },
323
+ {
324
+ "epoch": 0.22,
325
+ "learning_rate": 0.0001,
326
+ "loss": 1.1957,
327
+ "step": 470
328
+ },
329
+ {
330
+ "epoch": 0.22,
331
+ "learning_rate": 0.0001,
332
+ "loss": 1.1812,
333
+ "step": 480
334
+ },
335
+ {
336
+ "epoch": 0.23,
337
+ "learning_rate": 0.0001,
338
+ "loss": 1.1801,
339
+ "step": 490
340
+ },
341
+ {
342
+ "epoch": 0.23,
343
+ "learning_rate": 0.0001,
344
+ "loss": 1.184,
345
+ "step": 500
346
+ },
347
+ {
348
+ "epoch": 0.23,
349
+ "eval_val_accuracy": 0.6025,
350
+ "eval_val_loss": 1.1882715225219727,
351
+ "eval_val_runtime": 655.2879,
352
+ "eval_val_samples_per_second": 1.526,
353
+ "eval_val_steps_per_second": 0.191,
354
+ "step": 500
355
+ },
356
+ {
357
+ "epoch": 0.24,
358
+ "learning_rate": 0.0001,
359
+ "loss": 1.1634,
360
+ "step": 510
361
+ },
362
+ {
363
+ "epoch": 0.24,
364
+ "learning_rate": 0.0001,
365
+ "loss": 1.1614,
366
+ "step": 520
367
+ },
368
+ {
369
+ "epoch": 0.25,
370
+ "learning_rate": 0.0001,
371
+ "loss": 1.1824,
372
+ "step": 530
373
+ },
374
+ {
375
+ "epoch": 0.25,
376
+ "learning_rate": 0.0001,
377
+ "loss": 1.1846,
378
+ "step": 540
379
+ },
380
+ {
381
+ "epoch": 0.26,
382
+ "learning_rate": 0.0001,
383
+ "loss": 1.1846,
384
+ "step": 550
385
+ },
386
+ {
387
+ "epoch": 0.26,
388
+ "learning_rate": 0.0001,
389
+ "loss": 1.1908,
390
+ "step": 560
391
+ },
392
+ {
393
+ "epoch": 0.27,
394
+ "learning_rate": 0.0001,
395
+ "loss": 1.1865,
396
+ "step": 570
397
+ },
398
+ {
399
+ "epoch": 0.27,
400
+ "learning_rate": 0.0001,
401
+ "loss": 1.1951,
402
+ "step": 580
403
+ },
404
+ {
405
+ "epoch": 0.27,
406
+ "learning_rate": 0.0001,
407
+ "loss": 1.1854,
408
+ "step": 590
409
+ },
410
+ {
411
+ "epoch": 0.28,
412
+ "learning_rate": 0.0001,
413
+ "loss": 1.1856,
414
+ "step": 600
415
+ },
416
+ {
417
+ "epoch": 0.28,
418
+ "eval_val_accuracy": 0.6013333333333334,
419
+ "eval_val_loss": 1.1858690977096558,
420
+ "eval_val_runtime": 655.6111,
421
+ "eval_val_samples_per_second": 1.525,
422
+ "eval_val_steps_per_second": 0.191,
423
+ "step": 600
424
+ },
425
+ {
426
+ "epoch": 0.28,
427
+ "learning_rate": 0.0001,
428
+ "loss": 1.1898,
429
+ "step": 610
430
+ },
431
+ {
432
+ "epoch": 0.29,
433
+ "learning_rate": 0.0001,
434
+ "loss": 1.1962,
435
+ "step": 620
436
+ },
437
+ {
438
+ "epoch": 0.29,
439
+ "learning_rate": 0.0001,
440
+ "loss": 1.173,
441
+ "step": 630
442
+ },
443
+ {
444
+ "epoch": 0.3,
445
+ "learning_rate": 0.0001,
446
+ "loss": 1.1999,
447
+ "step": 640
448
+ },
449
+ {
450
+ "epoch": 0.3,
451
+ "learning_rate": 0.0001,
452
+ "loss": 1.1783,
453
+ "step": 650
454
+ },
455
+ {
456
+ "epoch": 0.31,
457
+ "learning_rate": 0.0001,
458
+ "loss": 1.2053,
459
+ "step": 660
460
+ },
461
+ {
462
+ "epoch": 0.31,
463
+ "learning_rate": 0.0001,
464
+ "loss": 1.1898,
465
+ "step": 670
466
+ },
467
+ {
468
+ "epoch": 0.32,
469
+ "learning_rate": 0.0001,
470
+ "loss": 1.1911,
471
+ "step": 680
472
+ },
473
+ {
474
+ "epoch": 0.32,
475
+ "learning_rate": 0.0001,
476
+ "loss": 1.1715,
477
+ "step": 690
478
+ },
479
+ {
480
+ "epoch": 0.33,
481
+ "learning_rate": 0.0001,
482
+ "loss": 1.1666,
483
+ "step": 700
484
+ },
485
+ {
486
+ "epoch": 0.33,
487
+ "eval_val_accuracy": 0.6033333333333334,
488
+ "eval_val_loss": 1.1816191673278809,
489
+ "eval_val_runtime": 655.5284,
490
+ "eval_val_samples_per_second": 1.525,
491
+ "eval_val_steps_per_second": 0.191,
492
+ "step": 700
493
+ },
494
+ {
495
+ "epoch": 0.33,
496
+ "learning_rate": 0.0001,
497
+ "loss": 1.1884,
498
+ "step": 710
499
+ },
500
+ {
501
+ "epoch": 0.33,
502
+ "learning_rate": 0.0001,
503
+ "loss": 1.1837,
504
+ "step": 720
505
+ },
506
+ {
507
+ "epoch": 0.34,
508
+ "learning_rate": 0.0001,
509
+ "loss": 1.185,
510
+ "step": 730
511
+ },
512
+ {
513
+ "epoch": 0.34,
514
+ "learning_rate": 0.0001,
515
+ "loss": 1.179,
516
+ "step": 740
517
+ },
518
+ {
519
+ "epoch": 0.35,
520
+ "learning_rate": 0.0001,
521
+ "loss": 1.1717,
522
+ "step": 750
523
+ },
524
+ {
525
+ "epoch": 0.35,
526
+ "learning_rate": 0.0001,
527
+ "loss": 1.1772,
528
+ "step": 760
529
+ },
530
+ {
531
+ "epoch": 0.36,
532
+ "learning_rate": 0.0001,
533
+ "loss": 1.176,
534
+ "step": 770
535
+ },
536
+ {
537
+ "epoch": 0.36,
538
+ "learning_rate": 0.0001,
539
+ "loss": 1.1839,
540
+ "step": 780
541
+ },
542
+ {
543
+ "epoch": 0.37,
544
+ "learning_rate": 0.0001,
545
+ "loss": 1.1889,
546
+ "step": 790
547
+ },
548
+ {
549
+ "epoch": 0.37,
550
+ "learning_rate": 0.0001,
551
+ "loss": 1.1765,
552
+ "step": 800
553
+ },
554
+ {
555
+ "epoch": 0.37,
556
+ "eval_val_accuracy": 0.5996666666666667,
557
+ "eval_val_loss": 1.1803770065307617,
558
+ "eval_val_runtime": 655.2163,
559
+ "eval_val_samples_per_second": 1.526,
560
+ "eval_val_steps_per_second": 0.191,
561
+ "step": 800
562
+ },
563
+ {
564
+ "epoch": 0.38,
565
+ "learning_rate": 0.0001,
566
+ "loss": 1.18,
567
+ "step": 810
568
+ },
569
+ {
570
+ "epoch": 0.38,
571
+ "learning_rate": 0.0001,
572
+ "loss": 1.1701,
573
+ "step": 820
574
+ },
575
+ {
576
+ "epoch": 0.39,
577
+ "learning_rate": 0.0001,
578
+ "loss": 1.1694,
579
+ "step": 830
580
+ },
581
+ {
582
+ "epoch": 0.39,
583
+ "learning_rate": 0.0001,
584
+ "loss": 1.1675,
585
+ "step": 840
586
+ },
587
+ {
588
+ "epoch": 0.4,
589
+ "learning_rate": 0.0001,
590
+ "loss": 1.1853,
591
+ "step": 850
592
+ },
593
+ {
594
+ "epoch": 0.4,
595
+ "learning_rate": 0.0001,
596
+ "loss": 1.1614,
597
+ "step": 860
598
+ },
599
+ {
600
+ "epoch": 0.4,
601
+ "learning_rate": 0.0001,
602
+ "loss": 1.1632,
603
+ "step": 870
604
+ },
605
+ {
606
+ "epoch": 0.41,
607
+ "learning_rate": 0.0001,
608
+ "loss": 1.149,
609
+ "step": 880
610
+ },
611
+ {
612
+ "epoch": 0.41,
613
+ "learning_rate": 0.0001,
614
+ "loss": 1.153,
615
+ "step": 890
616
+ },
617
+ {
618
+ "epoch": 0.42,
619
+ "learning_rate": 0.0001,
620
+ "loss": 1.1696,
621
+ "step": 900
622
+ },
623
+ {
624
+ "epoch": 0.42,
625
+ "eval_val_accuracy": 0.6045,
626
+ "eval_val_loss": 1.1773730516433716,
627
+ "eval_val_runtime": 655.5445,
628
+ "eval_val_samples_per_second": 1.525,
629
+ "eval_val_steps_per_second": 0.191,
630
+ "step": 900
631
+ },
632
+ {
633
+ "epoch": 0.42,
634
+ "learning_rate": 0.0001,
635
+ "loss": 1.179,
636
+ "step": 910
637
+ },
638
+ {
639
+ "epoch": 0.43,
640
+ "learning_rate": 0.0001,
641
+ "loss": 1.1925,
642
+ "step": 920
643
+ },
644
+ {
645
+ "epoch": 0.43,
646
+ "learning_rate": 0.0001,
647
+ "loss": 1.1754,
648
+ "step": 930
649
+ },
650
+ {
651
+ "epoch": 0.44,
652
+ "learning_rate": 0.0001,
653
+ "loss": 1.1714,
654
+ "step": 940
655
+ },
656
+ {
657
+ "epoch": 0.44,
658
+ "learning_rate": 0.0001,
659
+ "loss": 1.1722,
660
+ "step": 950
661
+ },
662
+ {
663
+ "epoch": 0.45,
664
+ "learning_rate": 0.0001,
665
+ "loss": 1.1838,
666
+ "step": 960
667
+ },
668
+ {
669
+ "epoch": 0.45,
670
+ "learning_rate": 0.0001,
671
+ "loss": 1.1705,
672
+ "step": 970
673
+ },
674
+ {
675
+ "epoch": 0.46,
676
+ "learning_rate": 0.0001,
677
+ "loss": 1.1678,
678
+ "step": 980
679
+ },
680
+ {
681
+ "epoch": 0.46,
682
+ "learning_rate": 0.0001,
683
+ "loss": 1.1726,
684
+ "step": 990
685
+ },
686
+ {
687
+ "epoch": 0.47,
688
+ "learning_rate": 0.0001,
689
+ "loss": 1.1631,
690
+ "step": 1000
691
+ },
692
+ {
693
+ "epoch": 0.47,
694
+ "eval_val_accuracy": 0.6073333333333334,
695
+ "eval_val_loss": 1.176171898841858,
696
+ "eval_val_runtime": 655.3242,
697
+ "eval_val_samples_per_second": 1.526,
698
+ "eval_val_steps_per_second": 0.191,
699
+ "step": 1000
700
+ },
701
+ {
702
+ "epoch": 0.47,
703
+ "learning_rate": 0.0001,
704
+ "loss": 1.177,
705
+ "step": 1010
706
+ },
707
+ {
708
+ "epoch": 0.47,
709
+ "learning_rate": 0.0001,
710
+ "loss": 1.1549,
711
+ "step": 1020
712
+ },
713
+ {
714
+ "epoch": 0.48,
715
+ "learning_rate": 0.0001,
716
+ "loss": 1.1683,
717
+ "step": 1030
718
+ },
719
+ {
720
+ "epoch": 0.48,
721
+ "learning_rate": 0.0001,
722
+ "loss": 1.179,
723
+ "step": 1040
724
+ },
725
+ {
726
+ "epoch": 0.49,
727
+ "learning_rate": 0.0001,
728
+ "loss": 1.1537,
729
+ "step": 1050
730
+ },
731
+ {
732
+ "epoch": 0.49,
733
+ "learning_rate": 0.0001,
734
+ "loss": 1.169,
735
+ "step": 1060
736
+ },
737
+ {
738
+ "epoch": 0.5,
739
+ "learning_rate": 0.0001,
740
+ "loss": 1.1563,
741
+ "step": 1070
742
+ },
743
+ {
744
+ "epoch": 0.5,
745
+ "learning_rate": 0.0001,
746
+ "loss": 1.1817,
747
+ "step": 1080
748
+ },
749
+ {
750
+ "epoch": 0.51,
751
+ "learning_rate": 0.0001,
752
+ "loss": 1.1691,
753
+ "step": 1090
754
+ },
755
+ {
756
+ "epoch": 0.51,
757
+ "learning_rate": 0.0001,
758
+ "loss": 1.1774,
759
+ "step": 1100
760
+ },
761
+ {
762
+ "epoch": 0.51,
763
+ "eval_val_accuracy": 0.601,
764
+ "eval_val_loss": 1.1745272874832153,
765
+ "eval_val_runtime": 655.3598,
766
+ "eval_val_samples_per_second": 1.526,
767
+ "eval_val_steps_per_second": 0.191,
768
+ "step": 1100
769
+ },
770
+ {
771
+ "epoch": 0.52,
772
+ "learning_rate": 0.0001,
773
+ "loss": 1.1875,
774
+ "step": 1110
775
+ },
776
+ {
777
+ "epoch": 0.52,
778
+ "learning_rate": 0.0001,
779
+ "loss": 1.1617,
780
+ "step": 1120
781
+ },
782
+ {
783
+ "epoch": 0.53,
784
+ "learning_rate": 0.0001,
785
+ "loss": 1.1688,
786
+ "step": 1130
787
+ },
788
+ {
789
+ "epoch": 0.53,
790
+ "learning_rate": 0.0001,
791
+ "loss": 1.1738,
792
+ "step": 1140
793
+ },
794
+ {
795
+ "epoch": 0.53,
796
+ "learning_rate": 0.0001,
797
+ "loss": 1.1661,
798
+ "step": 1150
799
+ },
800
+ {
801
+ "epoch": 0.54,
802
+ "learning_rate": 0.0001,
803
+ "loss": 1.1713,
804
+ "step": 1160
805
+ },
806
+ {
807
+ "epoch": 0.54,
808
+ "learning_rate": 0.0001,
809
+ "loss": 1.1595,
810
+ "step": 1170
811
+ },
812
+ {
813
+ "epoch": 0.55,
814
+ "learning_rate": 0.0001,
815
+ "loss": 1.1895,
816
+ "step": 1180
817
+ },
818
+ {
819
+ "epoch": 0.55,
820
+ "learning_rate": 0.0001,
821
+ "loss": 1.1865,
822
+ "step": 1190
823
+ },
824
+ {
825
+ "epoch": 0.56,
826
+ "learning_rate": 0.0001,
827
+ "loss": 1.167,
828
+ "step": 1200
829
+ },
830
+ {
831
+ "epoch": 0.56,
832
+ "eval_val_accuracy": 0.6008333333333333,
833
+ "eval_val_loss": 1.175210952758789,
834
+ "eval_val_runtime": 655.623,
835
+ "eval_val_samples_per_second": 1.525,
836
+ "eval_val_steps_per_second": 0.191,
837
+ "step": 1200
838
+ },
839
+ {
840
+ "epoch": 0.56,
841
+ "learning_rate": 0.0001,
842
+ "loss": 1.1532,
843
+ "step": 1210
844
+ },
845
+ {
846
+ "epoch": 0.57,
847
+ "learning_rate": 0.0001,
848
+ "loss": 1.1664,
849
+ "step": 1220
850
+ },
851
+ {
852
+ "epoch": 0.57,
853
+ "learning_rate": 0.0001,
854
+ "loss": 1.1719,
855
+ "step": 1230
856
+ },
857
+ {
858
+ "epoch": 0.58,
859
+ "learning_rate": 0.0001,
860
+ "loss": 1.1479,
861
+ "step": 1240
862
+ },
863
+ {
864
+ "epoch": 0.58,
865
+ "learning_rate": 0.0001,
866
+ "loss": 1.1581,
867
+ "step": 1250
868
+ },
869
+ {
870
+ "epoch": 0.59,
871
+ "learning_rate": 0.0001,
872
+ "loss": 1.1579,
873
+ "step": 1260
874
+ },
875
+ {
876
+ "epoch": 0.59,
877
+ "learning_rate": 0.0001,
878
+ "loss": 1.1705,
879
+ "step": 1270
880
+ },
881
+ {
882
+ "epoch": 0.6,
883
+ "learning_rate": 0.0001,
884
+ "loss": 1.1685,
885
+ "step": 1280
886
+ },
887
+ {
888
+ "epoch": 0.6,
889
+ "learning_rate": 0.0001,
890
+ "loss": 1.1624,
891
+ "step": 1290
892
+ },
893
+ {
894
+ "epoch": 0.6,
895
+ "learning_rate": 0.0001,
896
+ "loss": 1.1813,
897
+ "step": 1300
898
+ },
899
+ {
900
+ "epoch": 0.6,
901
+ "eval_val_accuracy": 0.6023333333333334,
902
+ "eval_val_loss": 1.171212911605835,
903
+ "eval_val_runtime": 655.8777,
904
+ "eval_val_samples_per_second": 1.525,
905
+ "eval_val_steps_per_second": 0.191,
906
+ "step": 1300
907
+ },
908
+ {
909
+ "epoch": 0.61,
910
+ "learning_rate": 0.0001,
911
+ "loss": 1.1509,
912
+ "step": 1310
913
+ },
914
+ {
915
+ "epoch": 0.61,
916
+ "learning_rate": 0.0001,
917
+ "loss": 1.1757,
918
+ "step": 1320
919
+ },
920
+ {
921
+ "epoch": 0.62,
922
+ "learning_rate": 0.0001,
923
+ "loss": 1.1719,
924
+ "step": 1330
925
+ },
926
+ {
927
+ "epoch": 0.62,
928
+ "learning_rate": 0.0001,
929
+ "loss": 1.1568,
930
+ "step": 1340
931
+ },
932
+ {
933
+ "epoch": 0.63,
934
+ "learning_rate": 0.0001,
935
+ "loss": 1.1693,
936
+ "step": 1350
937
+ },
938
+ {
939
+ "epoch": 0.63,
940
+ "learning_rate": 0.0001,
941
+ "loss": 1.1435,
942
+ "step": 1360
943
+ },
944
+ {
945
+ "epoch": 0.64,
946
+ "learning_rate": 0.0001,
947
+ "loss": 1.1641,
948
+ "step": 1370
949
+ },
950
+ {
951
+ "epoch": 0.64,
952
+ "learning_rate": 0.0001,
953
+ "loss": 1.1682,
954
+ "step": 1380
955
+ },
956
+ {
957
+ "epoch": 0.65,
958
+ "learning_rate": 0.0001,
959
+ "loss": 1.1813,
960
+ "step": 1390
961
+ },
962
+ {
963
+ "epoch": 0.65,
964
+ "learning_rate": 0.0001,
965
+ "loss": 1.1587,
966
+ "step": 1400
967
+ },
968
+ {
969
+ "epoch": 0.65,
970
+ "eval_val_accuracy": 0.6063333333333334,
971
+ "eval_val_loss": 1.1695449352264404,
972
+ "eval_val_runtime": 655.6474,
973
+ "eval_val_samples_per_second": 1.525,
974
+ "eval_val_steps_per_second": 0.191,
975
+ "step": 1400
976
+ },
977
+ {
978
+ "epoch": 0.66,
979
+ "learning_rate": 0.0001,
980
+ "loss": 1.1598,
981
+ "step": 1410
982
+ },
983
+ {
984
+ "epoch": 0.66,
985
+ "learning_rate": 0.0001,
986
+ "loss": 1.1478,
987
+ "step": 1420
988
+ },
989
+ {
990
+ "epoch": 0.67,
991
+ "learning_rate": 0.0001,
992
+ "loss": 1.1585,
993
+ "step": 1430
994
+ },
995
+ {
996
+ "epoch": 0.67,
997
+ "learning_rate": 0.0001,
998
+ "loss": 1.1727,
999
+ "step": 1440
1000
+ },
1001
+ {
1002
+ "epoch": 0.67,
1003
+ "learning_rate": 0.0001,
1004
+ "loss": 1.1478,
1005
+ "step": 1450
1006
+ },
1007
+ {
1008
+ "epoch": 0.68,
1009
+ "learning_rate": 0.0001,
1010
+ "loss": 1.1603,
1011
+ "step": 1460
1012
+ },
1013
+ {
1014
+ "epoch": 0.68,
1015
+ "learning_rate": 0.0001,
1016
+ "loss": 1.151,
1017
+ "step": 1470
1018
+ },
1019
+ {
1020
+ "epoch": 0.69,
1021
+ "learning_rate": 0.0001,
1022
+ "loss": 1.1555,
1023
+ "step": 1480
1024
+ },
1025
+ {
1026
+ "epoch": 0.69,
1027
+ "learning_rate": 0.0001,
1028
+ "loss": 1.1376,
1029
+ "step": 1490
1030
+ },
1031
+ {
1032
+ "epoch": 0.7,
1033
+ "learning_rate": 0.0001,
1034
+ "loss": 1.1554,
1035
+ "step": 1500
1036
+ },
1037
+ {
1038
+ "epoch": 0.7,
1039
+ "eval_val_accuracy": 0.6056666666666666,
1040
+ "eval_val_loss": 1.1676816940307617,
1041
+ "eval_val_runtime": 655.7108,
1042
+ "eval_val_samples_per_second": 1.525,
1043
+ "eval_val_steps_per_second": 0.191,
1044
+ "step": 1500
1045
+ },
1046
+ {
1047
+ "epoch": 0.7,
1048
+ "learning_rate": 0.0001,
1049
+ "loss": 1.1529,
1050
+ "step": 1510
1051
+ },
1052
+ {
1053
+ "epoch": 0.71,
1054
+ "learning_rate": 0.0001,
1055
+ "loss": 1.1417,
1056
+ "step": 1520
1057
+ },
1058
+ {
1059
+ "epoch": 0.71,
1060
+ "learning_rate": 0.0001,
1061
+ "loss": 1.1714,
1062
+ "step": 1530
1063
+ },
1064
+ {
1065
+ "epoch": 0.72,
1066
+ "learning_rate": 0.0001,
1067
+ "loss": 1.1585,
1068
+ "step": 1540
1069
+ },
1070
+ {
1071
+ "epoch": 0.72,
1072
+ "learning_rate": 0.0001,
1073
+ "loss": 1.1295,
1074
+ "step": 1550
1075
+ },
1076
+ {
1077
+ "epoch": 0.73,
1078
+ "learning_rate": 0.0001,
1079
+ "loss": 1.1492,
1080
+ "step": 1560
1081
+ },
1082
+ {
1083
+ "epoch": 0.73,
1084
+ "learning_rate": 0.0001,
1085
+ "loss": 1.164,
1086
+ "step": 1570
1087
+ },
1088
+ {
1089
+ "epoch": 0.74,
1090
+ "learning_rate": 0.0001,
1091
+ "loss": 1.168,
1092
+ "step": 1580
1093
+ },
1094
+ {
1095
+ "epoch": 0.74,
1096
+ "learning_rate": 0.0001,
1097
+ "loss": 1.1568,
1098
+ "step": 1590
1099
+ },
1100
+ {
1101
+ "epoch": 0.74,
1102
+ "learning_rate": 0.0001,
1103
+ "loss": 1.1639,
1104
+ "step": 1600
1105
+ },
1106
+ {
1107
+ "epoch": 0.74,
1108
+ "eval_val_accuracy": 0.6061666666666666,
1109
+ "eval_val_loss": 1.1664668321609497,
1110
+ "eval_val_runtime": 655.8117,
1111
+ "eval_val_samples_per_second": 1.525,
1112
+ "eval_val_steps_per_second": 0.191,
1113
+ "step": 1600
1114
+ },
1115
+ {
1116
+ "epoch": 0.75,
1117
+ "learning_rate": 0.0001,
1118
+ "loss": 1.1666,
1119
+ "step": 1610
1120
+ },
1121
+ {
1122
+ "epoch": 0.75,
1123
+ "learning_rate": 0.0001,
1124
+ "loss": 1.1527,
1125
+ "step": 1620
1126
+ },
1127
+ {
1128
+ "epoch": 0.76,
1129
+ "learning_rate": 0.0001,
1130
+ "loss": 1.1557,
1131
+ "step": 1630
1132
+ },
1133
+ {
1134
+ "epoch": 0.76,
1135
+ "learning_rate": 0.0001,
1136
+ "loss": 1.176,
1137
+ "step": 1640
1138
+ },
1139
+ {
1140
+ "epoch": 0.77,
1141
+ "learning_rate": 0.0001,
1142
+ "loss": 1.1579,
1143
+ "step": 1650
1144
+ },
1145
+ {
1146
+ "epoch": 0.77,
1147
+ "learning_rate": 0.0001,
1148
+ "loss": 1.1684,
1149
+ "step": 1660
1150
+ },
1151
+ {
1152
+ "epoch": 0.78,
1153
+ "learning_rate": 0.0001,
1154
+ "loss": 1.168,
1155
+ "step": 1670
1156
+ },
1157
+ {
1158
+ "epoch": 0.78,
1159
+ "learning_rate": 0.0001,
1160
+ "loss": 1.1403,
1161
+ "step": 1680
1162
+ },
1163
+ {
1164
+ "epoch": 0.79,
1165
+ "learning_rate": 0.0001,
1166
+ "loss": 1.1596,
1167
+ "step": 1690
1168
+ },
1169
+ {
1170
+ "epoch": 0.79,
1171
+ "learning_rate": 0.0001,
1172
+ "loss": 1.1885,
1173
+ "step": 1700
1174
+ },
1175
+ {
1176
+ "epoch": 0.79,
1177
+ "eval_val_accuracy": 0.6055,
1178
+ "eval_val_loss": 1.1667187213897705,
1179
+ "eval_val_runtime": 655.8869,
1180
+ "eval_val_samples_per_second": 1.525,
1181
+ "eval_val_steps_per_second": 0.191,
1182
+ "step": 1700
1183
+ },
1184
+ {
1185
+ "epoch": 0.8,
1186
+ "learning_rate": 0.0001,
1187
+ "loss": 1.1581,
1188
+ "step": 1710
1189
+ },
1190
+ {
1191
+ "epoch": 0.8,
1192
+ "learning_rate": 0.0001,
1193
+ "loss": 1.1547,
1194
+ "step": 1720
1195
+ },
1196
+ {
1197
+ "epoch": 0.8,
1198
+ "learning_rate": 0.0001,
1199
+ "loss": 1.1583,
1200
+ "step": 1730
1201
+ },
1202
+ {
1203
+ "epoch": 0.81,
1204
+ "learning_rate": 0.0001,
1205
+ "loss": 1.1635,
1206
+ "step": 1740
1207
+ },
1208
+ {
1209
+ "epoch": 0.81,
1210
+ "learning_rate": 0.0001,
1211
+ "loss": 1.1299,
1212
+ "step": 1750
1213
+ },
1214
+ {
1215
+ "epoch": 0.82,
1216
+ "learning_rate": 0.0001,
1217
+ "loss": 1.1604,
1218
+ "step": 1760
1219
+ },
1220
+ {
1221
+ "epoch": 0.82,
1222
+ "learning_rate": 0.0001,
1223
+ "loss": 1.1744,
1224
+ "step": 1770
1225
+ },
1226
+ {
1227
+ "epoch": 0.83,
1228
+ "learning_rate": 0.0001,
1229
+ "loss": 1.1523,
1230
+ "step": 1780
1231
+ },
1232
+ {
1233
+ "epoch": 0.83,
1234
+ "learning_rate": 0.0001,
1235
+ "loss": 1.1849,
1236
+ "step": 1790
1237
+ },
1238
+ {
1239
+ "epoch": 0.84,
1240
+ "learning_rate": 0.0001,
1241
+ "loss": 1.1535,
1242
+ "step": 1800
1243
+ },
1244
+ {
1245
+ "epoch": 0.84,
1246
+ "eval_val_accuracy": 0.6076666666666666,
1247
+ "eval_val_loss": 1.1651777029037476,
1248
+ "eval_val_runtime": 655.5772,
1249
+ "eval_val_samples_per_second": 1.525,
1250
+ "eval_val_steps_per_second": 0.191,
1251
+ "step": 1800
1252
+ },
1253
+ {
1254
+ "epoch": 0.84,
1255
+ "learning_rate": 0.0001,
1256
+ "loss": 1.1561,
1257
+ "step": 1810
1258
+ },
1259
+ {
1260
+ "epoch": 0.85,
1261
+ "learning_rate": 0.0001,
1262
+ "loss": 1.1553,
1263
+ "step": 1820
1264
+ },
1265
+ {
1266
+ "epoch": 0.85,
1267
+ "learning_rate": 0.0001,
1268
+ "loss": 1.1584,
1269
+ "step": 1830
1270
+ },
1271
+ {
1272
+ "epoch": 0.86,
1273
+ "learning_rate": 0.0001,
1274
+ "loss": 1.1412,
1275
+ "step": 1840
1276
+ },
1277
+ {
1278
+ "epoch": 0.86,
1279
+ "learning_rate": 0.0001,
1280
+ "loss": 1.1713,
1281
+ "step": 1850
1282
+ },
1283
+ {
1284
+ "epoch": 0.87,
1285
+ "learning_rate": 0.0001,
1286
+ "loss": 1.1739,
1287
+ "step": 1860
1288
+ },
1289
+ {
1290
+ "epoch": 0.87,
1291
+ "learning_rate": 0.0001,
1292
+ "loss": 1.1547,
1293
+ "step": 1870
1294
+ },
1295
+ {
1296
+ "epoch": 0.87,
1297
+ "learning_rate": 0.0001,
1298
+ "loss": 1.1463,
1299
+ "step": 1880
1300
+ },
1301
+ {
1302
+ "epoch": 0.88,
1303
+ "learning_rate": 0.0001,
1304
+ "loss": 1.1689,
1305
+ "step": 1890
1306
+ },
1307
+ {
1308
+ "epoch": 0.88,
1309
+ "learning_rate": 0.0001,
1310
+ "loss": 1.1522,
1311
+ "step": 1900
1312
+ },
1313
+ {
1314
+ "epoch": 0.88,
1315
+ "eval_val_accuracy": 0.6046666666666666,
1316
+ "eval_val_loss": 1.1651347875595093,
1317
+ "eval_val_runtime": 655.1953,
1318
+ "eval_val_samples_per_second": 1.526,
1319
+ "eval_val_steps_per_second": 0.191,
1320
+ "step": 1900
1321
+ },
1322
+ {
1323
+ "epoch": 1.01,
1324
+ "learning_rate": 0.0001,
1325
+ "loss": 1.1688,
1326
+ "step": 1910
1327
+ },
1328
+ {
1329
+ "epoch": 1.01,
1330
+ "learning_rate": 0.0001,
1331
+ "loss": 1.1549,
1332
+ "step": 1920
1333
+ },
1334
+ {
1335
+ "epoch": 1.02,
1336
+ "learning_rate": 0.0001,
1337
+ "loss": 1.1678,
1338
+ "step": 1930
1339
+ },
1340
+ {
1341
+ "epoch": 1.02,
1342
+ "learning_rate": 0.0001,
1343
+ "loss": 1.1601,
1344
+ "step": 1940
1345
+ },
1346
+ {
1347
+ "epoch": 1.03,
1348
+ "learning_rate": 0.0001,
1349
+ "loss": 1.1533,
1350
+ "step": 1950
1351
+ },
1352
+ {
1353
+ "epoch": 1.03,
1354
+ "learning_rate": 0.0001,
1355
+ "loss": 1.1606,
1356
+ "step": 1960
1357
+ },
1358
+ {
1359
+ "epoch": 1.04,
1360
+ "learning_rate": 0.0001,
1361
+ "loss": 1.1555,
1362
+ "step": 1970
1363
+ },
1364
+ {
1365
+ "epoch": 1.04,
1366
+ "learning_rate": 0.0001,
1367
+ "loss": 1.1551,
1368
+ "step": 1980
1369
+ },
1370
+ {
1371
+ "epoch": 1.05,
1372
+ "learning_rate": 0.0001,
1373
+ "loss": 1.1485,
1374
+ "step": 1990
1375
+ },
1376
+ {
1377
+ "epoch": 1.05,
1378
+ "learning_rate": 0.0001,
1379
+ "loss": 1.1631,
1380
+ "step": 2000
1381
+ },
1382
+ {
1383
+ "epoch": 1.05,
1384
+ "eval_val_accuracy": 0.6056666666666666,
1385
+ "eval_val_loss": 1.1633808612823486,
1386
+ "eval_val_runtime": 655.153,
1387
+ "eval_val_samples_per_second": 1.526,
1388
+ "eval_val_steps_per_second": 0.191,
1389
+ "step": 2000
1390
+ },
1391
+ {
1392
+ "epoch": 1.06,
1393
+ "learning_rate": 0.0001,
1394
+ "loss": 1.1526,
1395
+ "step": 2010
1396
+ },
1397
+ {
1398
+ "epoch": 1.06,
1399
+ "learning_rate": 0.0001,
1400
+ "loss": 1.1618,
1401
+ "step": 2020
1402
+ },
1403
+ {
1404
+ "epoch": 1.07,
1405
+ "learning_rate": 0.0001,
1406
+ "loss": 1.1616,
1407
+ "step": 2030
1408
+ },
1409
+ {
1410
+ "epoch": 1.07,
1411
+ "learning_rate": 0.0001,
1412
+ "loss": 1.1541,
1413
+ "step": 2040
1414
+ },
1415
+ {
1416
+ "epoch": 1.08,
1417
+ "learning_rate": 0.0001,
1418
+ "loss": 1.157,
1419
+ "step": 2050
1420
+ },
1421
+ {
1422
+ "epoch": 1.08,
1423
+ "learning_rate": 0.0001,
1424
+ "loss": 1.1453,
1425
+ "step": 2060
1426
+ },
1427
+ {
1428
+ "epoch": 1.09,
1429
+ "learning_rate": 0.0001,
1430
+ "loss": 1.1257,
1431
+ "step": 2070
1432
+ },
1433
+ {
1434
+ "epoch": 1.1,
1435
+ "learning_rate": 0.0001,
1436
+ "loss": 1.1464,
1437
+ "step": 2080
1438
+ },
1439
+ {
1440
+ "epoch": 1.1,
1441
+ "learning_rate": 0.0001,
1442
+ "loss": 1.1619,
1443
+ "step": 2090
1444
+ },
1445
+ {
1446
+ "epoch": 1.11,
1447
+ "learning_rate": 0.0001,
1448
+ "loss": 1.1535,
1449
+ "step": 2100
1450
+ },
1451
+ {
1452
+ "epoch": 1.11,
1453
+ "eval_val_accuracy": 0.607,
1454
+ "eval_val_loss": 1.1625254154205322,
1455
+ "eval_val_runtime": 655.4059,
1456
+ "eval_val_samples_per_second": 1.526,
1457
+ "eval_val_steps_per_second": 0.191,
1458
+ "step": 2100
1459
+ },
1460
+ {
1461
+ "epoch": 1.11,
1462
+ "learning_rate": 0.0001,
1463
+ "loss": 1.1495,
1464
+ "step": 2110
1465
+ },
1466
+ {
1467
+ "epoch": 1.12,
1468
+ "learning_rate": 0.0001,
1469
+ "loss": 1.1381,
1470
+ "step": 2120
1471
+ },
1472
+ {
1473
+ "epoch": 1.12,
1474
+ "learning_rate": 0.0001,
1475
+ "loss": 1.1469,
1476
+ "step": 2130
1477
+ },
1478
+ {
1479
+ "epoch": 1.13,
1480
+ "learning_rate": 0.0001,
1481
+ "loss": 1.166,
1482
+ "step": 2140
1483
+ },
1484
+ {
1485
+ "epoch": 1.13,
1486
+ "learning_rate": 0.0001,
1487
+ "loss": 1.1664,
1488
+ "step": 2150
1489
+ },
1490
+ {
1491
+ "epoch": 1.14,
1492
+ "learning_rate": 0.0001,
1493
+ "loss": 1.1795,
1494
+ "step": 2160
1495
+ },
1496
+ {
1497
+ "epoch": 1.14,
1498
+ "learning_rate": 0.0001,
1499
+ "loss": 1.1437,
1500
+ "step": 2170
1501
+ },
1502
+ {
1503
+ "epoch": 1.15,
1504
+ "learning_rate": 0.0001,
1505
+ "loss": 1.169,
1506
+ "step": 2180
1507
+ },
1508
+ {
1509
+ "epoch": 1.15,
1510
+ "learning_rate": 0.0001,
1511
+ "loss": 1.1412,
1512
+ "step": 2190
1513
+ },
1514
+ {
1515
+ "epoch": 1.16,
1516
+ "learning_rate": 0.0001,
1517
+ "loss": 1.1438,
1518
+ "step": 2200
1519
+ },
1520
+ {
1521
+ "epoch": 1.16,
1522
+ "eval_val_accuracy": 0.6048333333333333,
1523
+ "eval_val_loss": 1.1605136394500732,
1524
+ "eval_val_runtime": 655.4932,
1525
+ "eval_val_samples_per_second": 1.526,
1526
+ "eval_val_steps_per_second": 0.191,
1527
+ "step": 2200
1528
+ },
1529
+ {
1530
+ "epoch": 1.16,
1531
+ "learning_rate": 0.0001,
1532
+ "loss": 1.1647,
1533
+ "step": 2210
1534
+ },
1535
+ {
1536
+ "epoch": 1.17,
1537
+ "learning_rate": 0.0001,
1538
+ "loss": 1.1546,
1539
+ "step": 2220
1540
+ },
1541
+ {
1542
+ "epoch": 1.17,
1543
+ "learning_rate": 0.0001,
1544
+ "loss": 1.1625,
1545
+ "step": 2230
1546
+ },
1547
+ {
1548
+ "epoch": 1.18,
1549
+ "learning_rate": 0.0001,
1550
+ "loss": 1.1498,
1551
+ "step": 2240
1552
+ },
1553
+ {
1554
+ "epoch": 1.18,
1555
+ "learning_rate": 0.0001,
1556
+ "loss": 1.158,
1557
+ "step": 2250
1558
+ },
1559
+ {
1560
+ "epoch": 1.19,
1561
+ "learning_rate": 0.0001,
1562
+ "loss": 1.1488,
1563
+ "step": 2260
1564
+ },
1565
+ {
1566
+ "epoch": 1.2,
1567
+ "learning_rate": 0.0001,
1568
+ "loss": 1.1406,
1569
+ "step": 2270
1570
+ },
1571
+ {
1572
+ "epoch": 1.2,
1573
+ "learning_rate": 0.0001,
1574
+ "loss": 1.1441,
1575
+ "step": 2280
1576
+ },
1577
+ {
1578
+ "epoch": 1.21,
1579
+ "learning_rate": 0.0001,
1580
+ "loss": 1.1556,
1581
+ "step": 2290
1582
+ },
1583
+ {
1584
+ "epoch": 1.21,
1585
+ "learning_rate": 0.0001,
1586
+ "loss": 1.1402,
1587
+ "step": 2300
1588
+ },
1589
+ {
1590
+ "epoch": 1.21,
1591
+ "eval_val_accuracy": 0.6028333333333333,
1592
+ "eval_val_loss": 1.16200590133667,
1593
+ "eval_val_runtime": 655.4375,
1594
+ "eval_val_samples_per_second": 1.526,
1595
+ "eval_val_steps_per_second": 0.191,
1596
+ "step": 2300
1597
+ },
1598
+ {
1599
+ "epoch": 1.4,
1600
+ "learning_rate": 0.0001,
1601
+ "loss": 1.1366,
1602
+ "step": 2310
1603
+ },
1604
+ {
1605
+ "epoch": 1.41,
1606
+ "learning_rate": 0.0001,
1607
+ "loss": 1.1628,
1608
+ "step": 2320
1609
+ },
1610
+ {
1611
+ "epoch": 1.41,
1612
+ "learning_rate": 0.0001,
1613
+ "loss": 1.1549,
1614
+ "step": 2330
1615
+ },
1616
+ {
1617
+ "epoch": 1.42,
1618
+ "learning_rate": 0.0001,
1619
+ "loss": 1.1507,
1620
+ "step": 2340
1621
+ },
1622
+ {
1623
+ "epoch": 1.42,
1624
+ "learning_rate": 0.0001,
1625
+ "loss": 1.1603,
1626
+ "step": 2350
1627
+ },
1628
+ {
1629
+ "epoch": 1.43,
1630
+ "learning_rate": 0.0001,
1631
+ "loss": 1.164,
1632
+ "step": 2360
1633
+ },
1634
+ {
1635
+ "epoch": 1.44,
1636
+ "learning_rate": 0.0001,
1637
+ "loss": 1.1591,
1638
+ "step": 2370
1639
+ },
1640
+ {
1641
+ "epoch": 1.44,
1642
+ "learning_rate": 0.0001,
1643
+ "loss": 1.1478,
1644
+ "step": 2380
1645
+ },
1646
+ {
1647
+ "epoch": 1.45,
1648
+ "learning_rate": 0.0001,
1649
+ "loss": 1.1465,
1650
+ "step": 2390
1651
+ },
1652
+ {
1653
+ "epoch": 1.46,
1654
+ "learning_rate": 0.0001,
1655
+ "loss": 1.1456,
1656
+ "step": 2400
1657
+ },
1658
+ {
1659
+ "epoch": 1.46,
1660
+ "eval_val_accuracy": 0.6038333333333333,
1661
+ "eval_val_loss": 1.1612929105758667,
1662
+ "eval_val_runtime": 655.7562,
1663
+ "eval_val_samples_per_second": 1.525,
1664
+ "eval_val_steps_per_second": 0.191,
1665
+ "step": 2400
1666
+ },
1667
+ {
1668
+ "epoch": 1.46,
1669
+ "learning_rate": 0.0001,
1670
+ "loss": 1.1743,
1671
+ "step": 2410
1672
+ },
1673
+ {
1674
+ "epoch": 1.47,
1675
+ "learning_rate": 0.0001,
1676
+ "loss": 1.1686,
1677
+ "step": 2420
1678
+ },
1679
+ {
1680
+ "epoch": 1.47,
1681
+ "learning_rate": 0.0001,
1682
+ "loss": 1.1496,
1683
+ "step": 2430
1684
+ },
1685
+ {
1686
+ "epoch": 1.48,
1687
+ "learning_rate": 0.0001,
1688
+ "loss": 1.1492,
1689
+ "step": 2440
1690
+ },
1691
+ {
1692
+ "epoch": 1.49,
1693
+ "learning_rate": 0.0001,
1694
+ "loss": 1.1385,
1695
+ "step": 2450
1696
+ },
1697
+ {
1698
+ "epoch": 1.49,
1699
+ "learning_rate": 0.0001,
1700
+ "loss": 1.1408,
1701
+ "step": 2460
1702
+ },
1703
+ {
1704
+ "epoch": 1.5,
1705
+ "learning_rate": 0.0001,
1706
+ "loss": 1.1552,
1707
+ "step": 2470
1708
+ },
1709
+ {
1710
+ "epoch": 1.5,
1711
+ "learning_rate": 0.0001,
1712
+ "loss": 1.1484,
1713
+ "step": 2480
1714
+ },
1715
+ {
1716
+ "epoch": 1.51,
1717
+ "learning_rate": 0.0001,
1718
+ "loss": 1.1567,
1719
+ "step": 2490
1720
+ },
1721
+ {
1722
+ "epoch": 1.52,
1723
+ "learning_rate": 0.0001,
1724
+ "loss": 1.136,
1725
+ "step": 2500
1726
+ },
1727
+ {
1728
+ "epoch": 1.52,
1729
+ "eval_val_accuracy": 0.6068333333333333,
1730
+ "eval_val_loss": 1.1605098247528076,
1731
+ "eval_val_runtime": 655.6789,
1732
+ "eval_val_samples_per_second": 1.525,
1733
+ "eval_val_steps_per_second": 0.191,
1734
+ "step": 2500
1735
+ },
1736
+ {
1737
+ "epoch": 1.52,
1738
+ "learning_rate": 0.0001,
1739
+ "loss": 1.1581,
1740
+ "step": 2510
1741
+ },
1742
+ {
1743
+ "epoch": 1.53,
1744
+ "learning_rate": 0.0001,
1745
+ "loss": 1.1321,
1746
+ "step": 2520
1747
+ },
1748
+ {
1749
+ "epoch": 1.53,
1750
+ "learning_rate": 0.0001,
1751
+ "loss": 1.1561,
1752
+ "step": 2530
1753
+ },
1754
+ {
1755
+ "epoch": 1.54,
1756
+ "learning_rate": 0.0001,
1757
+ "loss": 1.1575,
1758
+ "step": 2540
1759
+ },
1760
+ {
1761
+ "epoch": 1.55,
1762
+ "learning_rate": 0.0001,
1763
+ "loss": 1.153,
1764
+ "step": 2550
1765
+ },
1766
+ {
1767
+ "epoch": 1.55,
1768
+ "learning_rate": 0.0001,
1769
+ "loss": 1.1621,
1770
+ "step": 2560
1771
+ },
1772
+ {
1773
+ "epoch": 1.56,
1774
+ "learning_rate": 0.0001,
1775
+ "loss": 1.1498,
1776
+ "step": 2570
1777
+ },
1778
+ {
1779
+ "epoch": 1.56,
1780
+ "learning_rate": 0.0001,
1781
+ "loss": 1.1444,
1782
+ "step": 2580
1783
+ },
1784
+ {
1785
+ "epoch": 1.57,
1786
+ "learning_rate": 0.0001,
1787
+ "loss": 1.1425,
1788
+ "step": 2590
1789
+ },
1790
+ {
1791
+ "epoch": 1.58,
1792
+ "learning_rate": 0.0001,
1793
+ "loss": 1.1618,
1794
+ "step": 2600
1795
+ },
1796
+ {
1797
+ "epoch": 1.58,
1798
+ "eval_val_accuracy": 0.6016666666666667,
1799
+ "eval_val_loss": 1.1583964824676514,
1800
+ "eval_val_runtime": 655.301,
1801
+ "eval_val_samples_per_second": 1.526,
1802
+ "eval_val_steps_per_second": 0.191,
1803
+ "step": 2600
1804
+ },
1805
+ {
1806
+ "epoch": 1.58,
1807
+ "learning_rate": 0.0001,
1808
+ "loss": 1.1461,
1809
+ "step": 2610
1810
+ },
1811
+ {
1812
+ "epoch": 1.59,
1813
+ "learning_rate": 0.0001,
1814
+ "loss": 1.1537,
1815
+ "step": 2620
1816
+ },
1817
+ {
1818
+ "epoch": 1.59,
1819
+ "learning_rate": 0.0001,
1820
+ "loss": 1.1411,
1821
+ "step": 2630
1822
+ },
1823
+ {
1824
+ "epoch": 1.6,
1825
+ "learning_rate": 0.0001,
1826
+ "loss": 1.1471,
1827
+ "step": 2640
1828
+ },
1829
+ {
1830
+ "epoch": 1.61,
1831
+ "learning_rate": 0.0001,
1832
+ "loss": 1.1294,
1833
+ "step": 2650
1834
+ },
1835
+ {
1836
+ "epoch": 1.61,
1837
+ "learning_rate": 0.0001,
1838
+ "loss": 1.1414,
1839
+ "step": 2660
1840
+ },
1841
+ {
1842
+ "epoch": 1.62,
1843
+ "learning_rate": 0.0001,
1844
+ "loss": 1.1552,
1845
+ "step": 2670
1846
+ },
1847
+ {
1848
+ "epoch": 1.62,
1849
+ "learning_rate": 0.0001,
1850
+ "loss": 1.167,
1851
+ "step": 2680
1852
+ },
1853
+ {
1854
+ "epoch": 1.63,
1855
+ "learning_rate": 0.0001,
1856
+ "loss": 1.16,
1857
+ "step": 2690
1858
+ },
1859
+ {
1860
+ "epoch": 1.64,
1861
+ "learning_rate": 0.0001,
1862
+ "loss": 1.1638,
1863
+ "step": 2700
1864
+ },
1865
+ {
1866
+ "epoch": 1.64,
1867
+ "eval_val_accuracy": 0.6055,
1868
+ "eval_val_loss": 1.1605194807052612,
1869
+ "eval_val_runtime": 655.6622,
1870
+ "eval_val_samples_per_second": 1.525,
1871
+ "eval_val_steps_per_second": 0.191,
1872
+ "step": 2700
1873
+ },
1874
+ {
1875
+ "epoch": 1.64,
1876
+ "learning_rate": 0.0001,
1877
+ "loss": 1.1459,
1878
+ "step": 2710
1879
+ },
1880
+ {
1881
+ "epoch": 1.65,
1882
+ "learning_rate": 0.0001,
1883
+ "loss": 1.1589,
1884
+ "step": 2720
1885
+ },
1886
+ {
1887
+ "epoch": 1.66,
1888
+ "learning_rate": 0.0001,
1889
+ "loss": 1.153,
1890
+ "step": 2730
1891
+ },
1892
+ {
1893
+ "epoch": 1.66,
1894
+ "learning_rate": 0.0001,
1895
+ "loss": 1.1654,
1896
+ "step": 2740
1897
+ },
1898
+ {
1899
+ "epoch": 1.67,
1900
+ "learning_rate": 0.0001,
1901
+ "loss": 1.1442,
1902
+ "step": 2750
1903
+ },
1904
+ {
1905
+ "epoch": 1.67,
1906
+ "learning_rate": 0.0001,
1907
+ "loss": 1.1389,
1908
+ "step": 2760
1909
+ },
1910
+ {
1911
+ "epoch": 1.68,
1912
+ "learning_rate": 0.0001,
1913
+ "loss": 1.1531,
1914
+ "step": 2770
1915
+ },
1916
+ {
1917
+ "epoch": 1.69,
1918
+ "learning_rate": 0.0001,
1919
+ "loss": 1.149,
1920
+ "step": 2780
1921
+ },
1922
+ {
1923
+ "epoch": 1.69,
1924
+ "learning_rate": 0.0001,
1925
+ "loss": 1.1603,
1926
+ "step": 2790
1927
+ },
1928
+ {
1929
+ "epoch": 1.7,
1930
+ "learning_rate": 0.0001,
1931
+ "loss": 1.1516,
1932
+ "step": 2800
1933
+ },
1934
+ {
1935
+ "epoch": 1.7,
1936
+ "eval_val_accuracy": 0.6048333333333333,
1937
+ "eval_val_loss": 1.1570664644241333,
1938
+ "eval_val_runtime": 655.7513,
1939
+ "eval_val_samples_per_second": 1.525,
1940
+ "eval_val_steps_per_second": 0.191,
1941
+ "step": 2800
1942
+ },
1943
+ {
1944
+ "epoch": 1.7,
1945
+ "learning_rate": 0.0001,
1946
+ "loss": 1.1428,
1947
+ "step": 2810
1948
+ },
1949
+ {
1950
+ "epoch": 1.71,
1951
+ "learning_rate": 0.0001,
1952
+ "loss": 1.1714,
1953
+ "step": 2820
1954
+ },
1955
+ {
1956
+ "epoch": 1.72,
1957
+ "learning_rate": 0.0001,
1958
+ "loss": 1.1488,
1959
+ "step": 2830
1960
+ },
1961
+ {
1962
+ "epoch": 1.72,
1963
+ "learning_rate": 0.0001,
1964
+ "loss": 1.1653,
1965
+ "step": 2840
1966
+ },
1967
+ {
1968
+ "epoch": 1.73,
1969
+ "learning_rate": 0.0001,
1970
+ "loss": 1.1481,
1971
+ "step": 2850
1972
+ },
1973
+ {
1974
+ "epoch": 1.73,
1975
+ "learning_rate": 0.0001,
1976
+ "loss": 1.152,
1977
+ "step": 2860
1978
+ },
1979
+ {
1980
+ "epoch": 1.74,
1981
+ "learning_rate": 0.0001,
1982
+ "loss": 1.1551,
1983
+ "step": 2870
1984
+ },
1985
+ {
1986
+ "epoch": 1.75,
1987
+ "learning_rate": 0.0001,
1988
+ "loss": 1.1336,
1989
+ "step": 2880
1990
+ },
1991
+ {
1992
+ "epoch": 1.75,
1993
+ "learning_rate": 0.0001,
1994
+ "loss": 1.1385,
1995
+ "step": 2890
1996
+ },
1997
+ {
1998
+ "epoch": 1.76,
1999
+ "learning_rate": 0.0001,
2000
+ "loss": 1.1574,
2001
+ "step": 2900
2002
+ },
2003
+ {
2004
+ "epoch": 1.76,
2005
+ "eval_val_accuracy": 0.6083333333333334,
2006
+ "eval_val_loss": 1.1578203439712524,
2007
+ "eval_val_runtime": 655.6226,
2008
+ "eval_val_samples_per_second": 1.525,
2009
+ "eval_val_steps_per_second": 0.191,
2010
+ "step": 2900
2011
+ },
2012
+ {
2013
+ "epoch": 1.76,
2014
+ "learning_rate": 0.0001,
2015
+ "loss": 1.1542,
2016
+ "step": 2910
2017
+ },
2018
+ {
2019
+ "epoch": 1.77,
2020
+ "learning_rate": 0.0001,
2021
+ "loss": 1.1429,
2022
+ "step": 2920
2023
+ },
2024
+ {
2025
+ "epoch": 1.78,
2026
+ "learning_rate": 0.0001,
2027
+ "loss": 1.1425,
2028
+ "step": 2930
2029
+ },
2030
+ {
2031
+ "epoch": 1.78,
2032
+ "learning_rate": 0.0001,
2033
+ "loss": 1.1302,
2034
+ "step": 2940
2035
+ },
2036
+ {
2037
+ "epoch": 1.79,
2038
+ "learning_rate": 0.0001,
2039
+ "loss": 1.1388,
2040
+ "step": 2950
2041
+ },
2042
+ {
2043
+ "epoch": 1.79,
2044
+ "learning_rate": 0.0001,
2045
+ "loss": 1.1383,
2046
+ "step": 2960
2047
+ },
2048
+ {
2049
+ "epoch": 1.8,
2050
+ "learning_rate": 0.0001,
2051
+ "loss": 1.1631,
2052
+ "step": 2970
2053
+ },
2054
+ {
2055
+ "epoch": 1.81,
2056
+ "learning_rate": 0.0001,
2057
+ "loss": 1.1334,
2058
+ "step": 2980
2059
+ },
2060
+ {
2061
+ "epoch": 1.81,
2062
+ "learning_rate": 0.0001,
2063
+ "loss": 1.1632,
2064
+ "step": 2990
2065
+ },
2066
+ {
2067
+ "epoch": 1.82,
2068
+ "learning_rate": 0.0001,
2069
+ "loss": 1.166,
2070
+ "step": 3000
2071
+ },
2072
+ {
2073
+ "epoch": 1.82,
2074
+ "eval_val_accuracy": 0.6036666666666666,
2075
+ "eval_val_loss": 1.1581933498382568,
2076
+ "eval_val_runtime": 655.1597,
2077
+ "eval_val_samples_per_second": 1.526,
2078
+ "eval_val_steps_per_second": 0.191,
2079
+ "step": 3000
2080
+ },
2081
+ {
2082
+ "epoch": 1.83,
2083
+ "learning_rate": 0.0001,
2084
+ "loss": 1.1376,
2085
+ "step": 3010
2086
+ },
2087
+ {
2088
+ "epoch": 1.83,
2089
+ "learning_rate": 0.0001,
2090
+ "loss": 1.1459,
2091
+ "step": 3020
2092
+ },
2093
+ {
2094
+ "epoch": 1.84,
2095
+ "learning_rate": 0.0001,
2096
+ "loss": 1.1438,
2097
+ "step": 3030
2098
+ },
2099
+ {
2100
+ "epoch": 1.84,
2101
+ "learning_rate": 0.0001,
2102
+ "loss": 1.1428,
2103
+ "step": 3040
2104
+ },
2105
+ {
2106
+ "epoch": 1.85,
2107
+ "learning_rate": 0.0001,
2108
+ "loss": 1.1538,
2109
+ "step": 3050
2110
+ },
2111
+ {
2112
+ "epoch": 1.86,
2113
+ "learning_rate": 0.0001,
2114
+ "loss": 1.1674,
2115
+ "step": 3060
2116
+ },
2117
+ {
2118
+ "epoch": 1.86,
2119
+ "learning_rate": 0.0001,
2120
+ "loss": 1.1493,
2121
+ "step": 3070
2122
+ },
2123
+ {
2124
+ "epoch": 1.87,
2125
+ "learning_rate": 0.0001,
2126
+ "loss": 1.145,
2127
+ "step": 3080
2128
+ },
2129
+ {
2130
+ "epoch": 1.87,
2131
+ "learning_rate": 0.0001,
2132
+ "loss": 1.1413,
2133
+ "step": 3090
2134
+ },
2135
+ {
2136
+ "epoch": 1.88,
2137
+ "learning_rate": 0.0001,
2138
+ "loss": 1.137,
2139
+ "step": 3100
2140
+ },
2141
+ {
2142
+ "epoch": 1.88,
2143
+ "eval_val_accuracy": 0.6073333333333334,
2144
+ "eval_val_loss": 1.1553535461425781,
2145
+ "eval_val_runtime": 655.0598,
2146
+ "eval_val_samples_per_second": 1.527,
2147
+ "eval_val_steps_per_second": 0.191,
2148
+ "step": 3100
2149
+ },
2150
+ {
2151
+ "epoch": 1.89,
2152
+ "learning_rate": 0.0001,
2153
+ "loss": 1.1431,
2154
+ "step": 3110
2155
+ },
2156
+ {
2157
+ "epoch": 1.89,
2158
+ "learning_rate": 0.0001,
2159
+ "loss": 1.1264,
2160
+ "step": 3120
2161
+ },
2162
+ {
2163
+ "epoch": 1.9,
2164
+ "learning_rate": 0.0001,
2165
+ "loss": 1.1316,
2166
+ "step": 3130
2167
+ },
2168
+ {
2169
+ "epoch": 1.9,
2170
+ "learning_rate": 0.0001,
2171
+ "loss": 1.1489,
2172
+ "step": 3140
2173
+ },
2174
+ {
2175
+ "epoch": 1.91,
2176
+ "learning_rate": 0.0001,
2177
+ "loss": 1.172,
2178
+ "step": 3150
2179
+ },
2180
+ {
2181
+ "epoch": 1.92,
2182
+ "learning_rate": 0.0001,
2183
+ "loss": 1.1506,
2184
+ "step": 3160
2185
+ },
2186
+ {
2187
+ "epoch": 1.92,
2188
+ "learning_rate": 0.0001,
2189
+ "loss": 1.1511,
2190
+ "step": 3170
2191
+ },
2192
+ {
2193
+ "epoch": 1.93,
2194
+ "learning_rate": 0.0001,
2195
+ "loss": 1.1376,
2196
+ "step": 3180
2197
+ },
2198
+ {
2199
+ "epoch": 1.93,
2200
+ "learning_rate": 0.0001,
2201
+ "loss": 1.1567,
2202
+ "step": 3190
2203
+ },
2204
+ {
2205
+ "epoch": 1.94,
2206
+ "learning_rate": 0.0001,
2207
+ "loss": 1.1667,
2208
+ "step": 3200
2209
+ },
2210
+ {
2211
+ "epoch": 1.94,
2212
+ "eval_val_accuracy": 0.6081666666666666,
2213
+ "eval_val_loss": 1.1557714939117432,
2214
+ "eval_val_runtime": 655.3121,
2215
+ "eval_val_samples_per_second": 1.526,
2216
+ "eval_val_steps_per_second": 0.191,
2217
+ "step": 3200
2218
+ }
2219
+ ],
2220
+ "logging_steps": 10,
2221
+ "max_steps": 3298,
2222
+ "num_input_tokens_seen": 0,
2223
+ "num_train_epochs": 2,
2224
+ "save_steps": 100,
2225
+ "total_flos": 0.0,
2226
+ "train_batch_size": 1,
2227
+ "trial_name": null,
2228
+ "trial_params": null
2229
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3acd2480255512f5a3815bf96c2997511992178893f9dc0954d4409672075a1a
3
+ size 5944
zero_to_fp32.py ADDED
@@ -0,0 +1,587 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
252
+ param_shapes = zero_model_states[0].param_shapes
253
+
254
+ # Reconstruction protocol:
255
+ #
256
+ # XXX: document this
257
+
258
+ if debug:
259
+ for i in range(world_size):
260
+ for j in range(len(fp32_flat_groups[0])):
261
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
262
+
263
+ # XXX: memory usage doubles here (zero2)
264
+ num_param_groups = len(fp32_flat_groups[0])
265
+ merged_single_partition_of_fp32_groups = []
266
+ for i in range(num_param_groups):
267
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
268
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
269
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
270
+ avail_numel = sum(
271
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
272
+
273
+ if debug:
274
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
275
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
276
+ # not asserting if there is a mismatch due to possible padding
277
+ print(f"Have {avail_numel} numels to process.")
278
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
279
+
280
+ # params
281
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
282
+ # out-of-core computing solution
283
+ total_numel = 0
284
+ total_params = 0
285
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
286
+ offset = 0
287
+ avail_numel = full_single_fp32_vector.numel()
288
+ for name, shape in shapes.items():
289
+
290
+ unpartitioned_numel = shape.numel()
291
+ total_numel += unpartitioned_numel
292
+ total_params += 1
293
+
294
+ if debug:
295
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
296
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
297
+ offset += unpartitioned_numel
298
+
299
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
300
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
301
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
302
+ # live optimizer object, so we are checking that the numbers are within the right range
303
+ align_to = 2 * world_size
304
+
305
+ def zero2_align(x):
306
+ return align_to * math.ceil(x / align_to)
307
+
308
+ if debug:
309
+ print(f"original offset={offset}, avail_numel={avail_numel}")
310
+
311
+ offset = zero2_align(offset)
312
+ avail_numel = zero2_align(avail_numel)
313
+
314
+ if debug:
315
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
316
+
317
+ # Sanity check
318
+ if offset != avail_numel:
319
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
320
+
321
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
322
+
323
+
324
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
325
+ state_dict = OrderedDict()
326
+
327
+ # buffers
328
+ buffers = zero_model_states[0].buffers
329
+ state_dict.update(buffers)
330
+ if debug:
331
+ print(f"added {len(buffers)} buffers")
332
+
333
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
334
+
335
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
336
+
337
+ # recover shared parameters
338
+ for pair in zero_model_states[0].shared_params:
339
+ if pair[1] in state_dict:
340
+ state_dict[pair[0]] = state_dict[pair[1]]
341
+
342
+ return state_dict
343
+
344
+
345
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
346
+ remainder = unpartitioned_numel % world_size
347
+ padding_numel = (world_size - remainder) if remainder else 0
348
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
349
+ return partitioned_numel, padding_numel
350
+
351
+
352
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
353
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
354
+ return
355
+
356
+ if debug:
357
+ for i in range(world_size):
358
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
359
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
360
+
361
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
362
+ wanted_params = len(frozen_param_shapes)
363
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
364
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
365
+ print(f'Frozen params: Have {avail_numel} numels to process.')
366
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
367
+
368
+ total_params = 0
369
+ total_numel = 0
370
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
371
+ total_params += 1
372
+ unpartitioned_numel = shape.numel()
373
+ total_numel += unpartitioned_numel
374
+
375
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
376
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
377
+
378
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
379
+
380
+ if debug:
381
+ print(
382
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
383
+ )
384
+
385
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
386
+
387
+
388
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
389
+ param_shapes = zero_model_states[0].param_shapes
390
+ avail_numel = fp32_flat_groups[0].numel() * world_size
391
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
392
+ # param, re-consolidating each param, while dealing with padding if any
393
+
394
+ # merge list of dicts, preserving order
395
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
396
+
397
+ if debug:
398
+ for i in range(world_size):
399
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
400
+
401
+ wanted_params = len(param_shapes)
402
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
403
+ # not asserting if there is a mismatch due to possible padding
404
+ avail_numel = fp32_flat_groups[0].numel() * world_size
405
+ print(f"Trainable params: Have {avail_numel} numels to process.")
406
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
407
+
408
+ # params
409
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
410
+ # out-of-core computing solution
411
+ offset = 0
412
+ total_numel = 0
413
+ total_params = 0
414
+ for name, shape in param_shapes.items():
415
+
416
+ unpartitioned_numel = shape.numel()
417
+ total_numel += unpartitioned_numel
418
+ total_params += 1
419
+
420
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
421
+
422
+ if debug:
423
+ print(
424
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
425
+ )
426
+
427
+ # XXX: memory usage doubles here
428
+ state_dict[name] = torch.cat(
429
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
430
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
431
+ offset += partitioned_numel
432
+
433
+ offset *= world_size
434
+
435
+ # Sanity check
436
+ if offset != avail_numel:
437
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
438
+
439
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
440
+
441
+
442
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
443
+ state_dict = OrderedDict()
444
+
445
+ # buffers
446
+ buffers = zero_model_states[0].buffers
447
+ state_dict.update(buffers)
448
+ if debug:
449
+ print(f"added {len(buffers)} buffers")
450
+
451
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
452
+
453
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
454
+
455
+ # recover shared parameters
456
+ for pair in zero_model_states[0].shared_params:
457
+ if pair[1] in state_dict:
458
+ state_dict[pair[0]] = state_dict[pair[1]]
459
+
460
+ return state_dict
461
+
462
+
463
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
464
+ """
465
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
466
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
467
+ via a model hub.
468
+
469
+ Args:
470
+ - ``checkpoint_dir``: path to the desired checkpoint folder
471
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
472
+
473
+ Returns:
474
+ - pytorch ``state_dict``
475
+
476
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
477
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
478
+ the checkpoint.
479
+
480
+ A typical usage might be ::
481
+
482
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
483
+ # do the training and checkpoint saving
484
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
485
+ model = model.cpu() # move to cpu
486
+ model.load_state_dict(state_dict)
487
+ # submit to model hub or save the model to share with others
488
+
489
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
490
+ application. i.e. you will need to re-initialize the deepspeed engine, since
491
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
492
+
493
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
494
+
495
+ """
496
+ if tag is None:
497
+ latest_path = os.path.join(checkpoint_dir, 'latest')
498
+ if os.path.isfile(latest_path):
499
+ with open(latest_path, 'r') as fd:
500
+ tag = fd.read().strip()
501
+ else:
502
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
503
+
504
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
505
+
506
+ if not os.path.isdir(ds_checkpoint_dir):
507
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
508
+
509
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
510
+
511
+
512
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
513
+ """
514
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
515
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
516
+
517
+ Args:
518
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
519
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
520
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
521
+ """
522
+
523
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
524
+ print(f"Saving fp32 state dict to {output_file}")
525
+ torch.save(state_dict, output_file)
526
+
527
+
528
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
529
+ """
530
+ 1. Put the provided model to cpu
531
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
532
+ 3. Load it into the provided model
533
+
534
+ Args:
535
+ - ``model``: the model object to update
536
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
537
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
538
+
539
+ Returns:
540
+ - ``model`: modified model
541
+
542
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
543
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
544
+ conveniently placed for you in the checkpoint folder.
545
+
546
+ A typical usage might be ::
547
+
548
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
549
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
550
+ # submit to model hub or save the model to share with others
551
+
552
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
553
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
554
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
555
+
556
+ """
557
+ logger.info(f"Extracting fp32 weights")
558
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
559
+
560
+ logger.info(f"Overwriting model with fp32 weights")
561
+ model = model.cpu()
562
+ model.load_state_dict(state_dict, strict=False)
563
+
564
+ return model
565
+
566
+
567
+ if __name__ == "__main__":
568
+
569
+ parser = argparse.ArgumentParser()
570
+ parser.add_argument("checkpoint_dir",
571
+ type=str,
572
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
573
+ parser.add_argument(
574
+ "output_file",
575
+ type=str,
576
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
577
+ parser.add_argument("-t",
578
+ "--tag",
579
+ type=str,
580
+ default=None,
581
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
582
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
583
+ args = parser.parse_args()
584
+
585
+ debug = args.debug
586
+
587
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)