File size: 2,042 Bytes
b03ab60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d07e417
b03ab60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d07e417
 
 
b03ab60
 
d07e417
f5fe73f
b03ab60
 
d07e417
b03ab60
 
 
 
 
 
d07e417
 
 
 
 
 
 
 
 
 
b03ab60
 
 
 
f5fe73f
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
library_name: peft
license: apache-2.0
base_model: TheBloke/Mistral-7B-Instruct-v0.2-GPTQ
tags:
- generated_from_trainer
model-index:
- name: XPFaculty-ft
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# XPFaculty-ft

This model is a fine-tuned version of [TheBloke/Mistral-7B-Instruct-v0.2-GPTQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GPTQ) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2488

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 3
- eval_batch_size: 3
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 12
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 10.017        | 1.0   | 25   | 2.1432          |
| 7.9205        | 2.0   | 50   | 1.7228          |
| 6.0142        | 3.0   | 75   | 1.3397          |
| 5.1375        | 4.0   | 100  | 1.2745          |
| 4.8759        | 5.0   | 125  | 1.2605          |
| 4.6752        | 6.0   | 150  | 1.2525          |
| 4.5039        | 7.0   | 175  | 1.2480          |
| 4.3596        | 8.0   | 200  | 1.2496          |
| 4.2584        | 9.0   | 225  | 1.2488          |
| 4.2064        | 10.0  | 250  | 1.2488          |


### Framework versions

- PEFT 0.14.0
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0