Baichuan-M1-14B-Base / modeling_baichuan.py
GradientGuru's picture
Upload folder using huggingface_hub
607f563 verified
import math
import os
from typing import List, Optional, Tuple, Union, Dict, Any
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from einops import rearrange
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers import add_start_docstrings, PreTrainedModel, DynamicCache, \
GenerationMixin, StaticCache, GenerationConfig
from transformers.activations import ACT2FN
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
from transformers.modeling_flash_attention_utils import _flash_supports_window_size, \
_upad_input
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from transformers.utils import is_flash_attn_2_available, is_flash_attn_greater_or_equal_2_10, \
add_start_docstrings_to_model_forward, is_torchdynamo_compiling, logging, \
is_flash_attn_greater_or_equal
if is_flash_attn_2_available():
from flash_attn.bert_padding import pad_input
from flash_attn import flash_attn_func, flash_attn_varlen_func
from flash_attn.layers.rotary import apply_rotary_emb_func
from .configuration_baichuan import BaichuanM1Config
logger = logging.get_logger(__name__)
class CustomCache(DynamicCache):
def __init__(self):
super().__init__()
self.past_len = []
def get_past_len(self, layer_idx: Optional[int] = 0) -> int:
if len(self.past_len) <= layer_idx:
return 0
return self.past_len[layer_idx]
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
"""Returns the sequence length of the cached states. A layer index can be optionally passed."""
# TODO: deprecate this function in favor of `cache_position`
if len(self.key_cache) <= layer_idx:
return 0
return self.key_cache[layer_idx].shape[1]
def update(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
layer_idx: int,
cache_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
Parameters:
key_states (`torch.Tensor`):
The new key states to cache.
value_states (`torch.Tensor`):
The new value states to cache.
layer_idx (`int`):
The index of the layer to cache the states for.
cache_kwargs (`Dict[str, Any]`, `optional`):
Additional arguments for the cache subclass. No additional arguments are used in `DynamicCache`.
Return:
A tuple containing the updated key and value states.
"""
# Update the number of seen tokens
if layer_idx == 0:
self._seen_tokens += key_states.shape[1]
# Update the cache
if len(self.key_cache) <= layer_idx:
self.key_cache.append(key_states)
self.value_cache.append(value_states)
else:
self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=1)
self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=1)
if len(self.past_len) <= layer_idx:
self.past_len.append(key_states.shape[1])
else:
self.past_len[layer_idx] += key_states.shape[1]
return self.key_cache[layer_idx], self.value_cache[layer_idx]
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
min_dtype: float,
cache_position: torch.Tensor,
batch_size: int,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to plcae the 4D attention mask on.
min_dtype (`float`):
The minimum value representable with the dtype `dtype`.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
class BaichuanRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
RMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
# convert into half-precision if necessary
if self.weight.dtype in [torch.float16, torch.bfloat16]:
hidden_states = hidden_states.to(self.weight.dtype)
return self.weight * hidden_states
class RotaryEmbedding(torch.nn.Module):
def __init__(self, dim, max_position_embeddings=2048, base=1e5, device=None, interleaved=False):
super().__init__()
self.inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
self.base = base
self.dim = dim
# Build here to make `torch.jit.trace` work.
self.max_seq_len_cached = 0
self.interleaved = interleaved
def forward(self, q, k, seqlen_offset=None, cu_seqlens=None, max_seqlen=None):
# x: [bs, num_attention_heads, seq_len, head_size]
# This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
seq_len_dim = 1
seq_len = q.shape[seq_len_dim] + seqlen_offset
if seq_len > self.max_seq_len_cached:
self.max_seq_len_cached = seq_len
self.inv_freq = 1.0 / (
self.base ** (torch.arange(0, self.dim, 2).float().to(self.inv_freq.device) / self.dim))
t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
# freqs = torch.einsum("i,j->ij", t, self.inv_freq) # dont use this, bug in fp16
freqs = torch.outer(t, self.inv_freq)
self.cos_cached = freqs.cos().to(q.device)
self.sin_cached = freqs.sin().to(k.device)
q_ori_size = q.size()
k_ori_size = k.size()
if cu_seqlens is not None:
q = flatten_one_dim(q)
k = flatten_one_dim(k)
q_new = apply_rotary_emb_func(
q.float(), self.cos_cached[seqlen_offset:], self.sin_cached[seqlen_offset:],
self.interleaved, True, # inplace=True
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen
).to(q.dtype)
k_new = apply_rotary_emb_func(
k.float(), self.cos_cached[seqlen_offset:], self.sin_cached[seqlen_offset:],
self.interleaved, True,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen
).to(k.dtype)
if cu_seqlens is not None:
q_new = q_new.reshape(*q_ori_size)
k_new = k_new.reshape(*k_ori_size)
return q_new, k_new
class BaichuanMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, hidden_state):
return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state))
class BaichuanAttention(nn.Module):
"""
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
and "Generating Long Sequences with Sparse Transformers".
"""
def __init__(self, config: BaichuanM1Config, layer_idx: Optional[int] = None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
if layer_idx is None:
raise ValueError(
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
"when creating this class."
)
self.hidden_size = config.hidden_size
self.is_swa = layer_idx in self.config.sliding_window_layers
self.num_heads = config.num_swa_attention_heads if self.is_swa else config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.num_key_value_heads = config.num_swa_key_value_heads if self.is_swa else config.num_key_value_heads
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = config.rope_theta
self.is_causal = True
self.attention_dropout = config.attention_dropout
if (self.head_dim * self.num_heads) != self.hidden_size:
raise ValueError(
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
f" and `num_heads`: {self.num_heads})."
)
self.W_pack = nn.Linear(config.hidden_size, self.hidden_size + 2 * self.num_key_value_heads * self.head_dim,
bias=False)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
self.rotary_emb = RotaryEmbedding(dim=self.head_dim, base=self.config.rope_theta,
max_position_embeddings=self.config.max_position_embeddings)
self.conv_window = config.conv_window
assert self.conv_window == 2 #%% Currently, only supported window=2 when inference
self.conv_k = nn.Parameter(torch.softmax(torch.randn((1, 1, self.num_key_value_heads, 1, self.conv_window)), dim=-1))
self.conv_v = nn.Parameter(torch.softmax(torch.randn((1, 1, self.num_key_value_heads, 1, self.conv_window)), dim=-1))
self.last_k, self.last_v = None, None
def get_max_seqlen(cu_seqlens):
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
return max_seqlen
def flatten_one_dim(tensor):
tensor = tensor.view(-1, tensor.size(-2), tensor.size(-1))
return tensor
def prepare_for_flash_attention_varlen(query, key, value, cu_seqlens):
query = query.view(-1, query.size(-2), query.size(-1))
key = key.view(-1, key.size(-2), key.size(-1))
value = value.view(-1, value.size(-2), value.size(-1))
return query, key, value, get_max_seqlen(cu_seqlens)
def flash_attention_forward(
query_states: torch.Tensor,
key_states: torch.Tensor,
value_states: torch.Tensor,
query_length: int,
is_causal: bool,
dropout: float = 0.0,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
seqlens: Optional[torch.LongTensor] = None,
softmax_scale: Optional[float] = None,
sliding_window: Optional[int] = None,
use_top_left_mask: bool = False,
softcap: Optional[float] = None,
deterministic: bool = None,
):
"""
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
first unpad the input, then computes the attention scores and pad the final attention scores.
Args:
query_states (`torch.Tensor`):
Input query states to be passed to Flash Attention API
key_states (`torch.Tensor`):
Input key states to be passed to Flash Attention API
value_states (`torch.Tensor`):
Input value states to be passed to Flash Attention API
attention_mask (`torch.Tensor`):
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
position of padding tokens and 1 for the position of non-padding tokens.
dropout (`float`):
Attention dropout
softmax_scale (`float`, *optional*):
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
use_top_left_mask (`bool`, defaults to `False`):
flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference.
softcap (`float`, *optional*):
Softcap for the attention logits, used e.g. in gemma2.
deterministic (`bool`, *optional*):
Determines if the deterministic option introduced in flash_attn>=2.4.1 is enabled.
"""
if not use_top_left_mask:
causal = is_causal
else:
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. .
causal = is_causal and query_length != 1
# Assuming 4D tensors, key_states.shape[1] is the key/value sequence length (source length).
use_sliding_windows = (
_flash_supports_window_size and sliding_window is not None and key_states.shape[1] > sliding_window
)
flash_kwargs = {"window_size": (sliding_window - 1, 0)} if use_sliding_windows else {}
if is_flash_attn_greater_or_equal("2.4.1"):
if deterministic is None:
deterministic = os.environ.get("FLASH_ATTENTION_DETERMINISTIC", "0") == "1"
flash_kwargs["deterministic"] = deterministic
if softcap is not None:
flash_kwargs["softcap"] = softcap
# Contains at least one padding token in the sequence
if seqlens is not None:
batch_size = query_states.shape[0]
query_states, key_states, value_states, max_seqlen = prepare_for_flash_attention_varlen(query_states,
key_states,
value_states, seqlens)
attn_output = flash_attn_varlen_func(
query_states,
key_states,
value_states,
cu_seqlens_q=seqlens,
cu_seqlens_k=seqlens,
max_seqlen_q=max_seqlen,
max_seqlen_k=max_seqlen,
dropout_p=dropout,
softmax_scale=softmax_scale,
causal=causal,
**flash_kwargs,
)
attn_output = attn_output.reshape(batch_size, -1, attn_output.size(-2), attn_output.size(-1))
elif attention_mask is not None:
batch_size = query_states.shape[0]
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = _upad_input(
query_states, key_states, value_states, attention_mask, query_length
)
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
attn_output_unpad = flash_attn_varlen_func(
query_states,
key_states,
value_states,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=max_seqlen_in_batch_q,
max_seqlen_k=max_seqlen_in_batch_k,
dropout_p=dropout,
softmax_scale=softmax_scale,
causal=causal,
**flash_kwargs,
)
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
else:
attn_output = flash_attn_func(
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal, **flash_kwargs
)
return attn_output
def custom_convolution(U, K):
"""
U: Input matrix, shape (bs, seq, h, d)
K: Convolution kernel, shape (w, h)
Returns: Output matrix V, shape (bs, seq, h, d)
"""
# h, w = K.shape
w = K.size(-1)
padding = (w - 1, 0)
U_padded = F.pad(U, (0, 0, 0, 0, *padding)) # Shape becomes (bs, seq+w-1, h, d)
U_unfolded = U_padded.unfold(1, w, 1) # Shape becomes (bs, seq+w-1, h, d, w)
V_unfolded = U_unfolded * K # Shape remains (bs, seq, h, d, w)
V = V_unfolded.sum(dim=-1) # Shape becomes (bs, seq, h, d)
return V
def custom_convolution_with_splits(U, K, cu_seqlens):
"""
U: Input matrix, shape (bs, seq, h, d)
K: Convolution kernel, shape (w, h)
cu_seqlens: Cumulative sequence lengths, indicating how to split the input.
Returns: Output matrix, shape (bs, seq, h, d)
"""
ori_shape = U.size() # Save the original shape of U
# Flatten U to handle variable-length sequences
U_flatten = U.reshape(1, -1, ori_shape[-2], ori_shape[-1]) # Shape: (1, total_seq, h, d)
# Perform convolution on each subsequence separately
V_parts = [] # Store the results of each subsequence
start = 0 # Start index of the current subsequence
for end in cu_seqlens[1:]:
end = end.item() # Convert scalar tensor to int
U_part = U_flatten[:, start:end, :, :] # Slice the subsequence (1, seq_sub, h, d)
V_part = custom_convolution(U_part, K) # Apply custom convolution
V_parts.append(V_part) # Append the result
start = end # Update the start index for the next subsequence
# Concatenate the results along the sequence dimension
V = torch.cat(V_parts, dim=1).to(U) # Shape: (1, total_seq, h, d)
# Reshape the output to match the original input shape
return V.reshape(ori_shape)
class BaichuanFlashAttention2(BaichuanAttention):
"""
Baichuan flash attention module, following Baichuan attention module. This module inherits from `BaichuanAttention`
as the weights of the module stays untouched. The only required change would be on the forward pass
where it needs to correctly call the public API of flash attention and deal with padding tokens
in case the input contains any of them.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
seqlens: Optional[torch.LongTensor] = None,
past_key_value: Optional[CustomCache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
):
bsz, q_len, _ = hidden_states.size()
proj = self.W_pack(hidden_states)
proj = rearrange(proj, 'bs seq_len (n_head head_dim) -> n_head bs seq_len head_dim', head_dim=self.head_dim)
query_states = rearrange(proj[:self.num_heads], 'n_head bs seq_len head_dim -> bs seq_len n_head head_dim')
key_states = rearrange(proj[self.num_heads:self.num_heads + self.num_key_value_heads],
'n_head bs seq_len head_dim -> bs seq_len n_head head_dim')
value_states = rearrange(proj[self.num_heads + self.num_key_value_heads:],
'n_head bs seq_len head_dim -> bs seq_len n_head head_dim')
if past_key_value is None or past_key_value.get_seq_length(self.layer_idx) == 0:# prefill
if not self.training:
self.last_k = key_states[:, -1:]
self.last_v = value_states[:, -1:]
if seqlens is None:
key_states = custom_convolution(key_states, self.conv_k)
value_states = custom_convolution(value_states, self.conv_v)
else:
assert seqlens.ndim==1
key_states=custom_convolution_with_splits(key_states,self.conv_k,seqlens)
value_states=custom_convolution_with_splits(value_states,self.conv_v,seqlens)
else: # decode
self.last_k, key_states = key_states, self.conv_k[0, 0, :, 0, :1] * self.last_k + self.conv_k[0, 0, :, 0, 1:] * key_states
self.last_v, value_states = value_states, self.conv_v[0, 0, :, 0, :1] * self.last_v + self.conv_v[0, 0, :, 0, 1:] * value_states
if seqlens is not None:
max_seqlen = get_max_seqlen(seqlens)
else:
max_seqlen = None
past_len = past_key_value.get_past_len(self.layer_idx) if past_key_value is not None else 0
query_states, key_states = self.rotary_emb(
query_states,
key_states,
seqlen_offset=past_len,
cu_seqlens=seqlens,
max_seqlen=max_seqlen
)
if past_key_value is not None:
cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
kv_seq_len = key_states.shape[1] + past_key_value.get_seq_length(self.layer_idx)
if (
self.is_swa
and kv_seq_len > self.config.sliding_window
and cache_has_contents
):
slicing_tokens = 1 - self.config.sliding_window
past_key = past_key_value[self.layer_idx][0]
past_value = past_key_value[self.layer_idx][1]
past_key_value.key_cache[self.layer_idx] = past_key[:, slicing_tokens:, :, :].contiguous()
past_key_value.value_cache[self.layer_idx] = past_value[:, slicing_tokens:, :, :].contiguous()
if past_key_value[self.layer_idx][0].shape[1] != self.config.sliding_window - 1:
raise ValueError(
f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
f" {past_key.shape}"
)
# if attention_mask is not None:
# # TODO: not check!!
# attention_mask = attention_mask[:, slicing_tokens:]
# attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx)
input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
logger.warning_once(
f"The input hidden states seems to be silently casted in float32, this might be related to"
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
f" {target_dtype}."
)
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
if self.is_swa:
sliding_window = self.config.sliding_window
else:
sliding_window = None
attn_output = flash_attention_forward(
query_states,
key_states,
value_states,
query_length=q_len,
position_ids=position_ids,
seqlens=seqlens,
sliding_window=sliding_window,
is_causal=self.is_causal,
use_top_left_mask=self._flash_attn_uses_top_left_mask,
)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
Baichuan_ATTENTION_CLASSES = {
"eager": BaichuanAttention,
"flash_attention_2": BaichuanFlashAttention2,
}
class BaichuanDecoderLayer(nn.Module):
def __init__(self, config: BaichuanM1Config, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.layer_idx = layer_idx
self.self_attn = Baichuan_ATTENTION_CLASSES['flash_attention_2'](config, layer_idx)
self.mlp = BaichuanMLP(config)
self.input_layernorm = BaichuanRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = BaichuanRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
seqlens: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, sequence_length)` where padding elements are indicated by 0.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence.
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
with `head_dim` being the embedding dimension of each attention head.
kwargs (`dict`, *optional*):
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
into the model
"""
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
seqlens=seqlens,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs
Baichuan_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`BaichuanM1Config`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare Bai chuan Model outputting raw hidden-states without any specific head on top.",
Baichuan_START_DOCSTRING,
)
class BaichuanPreTrainedModel(PreTrainedModel):
config_class = BaichuanM1Config
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["BaichuanDecoderLayer"]
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_cache_class = True
_supports_quantized_cache = True
_supports_static_cache = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
Baichuan_INPUTS_DOCSTRING = r"""
"""
@add_start_docstrings(
"The bare Baichuan Model outputting raw hidden-states without any specific head on top.",
Baichuan_START_DOCSTRING,
)
class BaichuanModel(BaichuanPreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`BaichuanDecoderLayer`]
Args:
config: BaichuanM1Config
"""
def __init__(self, config: BaichuanM1Config):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[BaichuanDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self._attn_implementation = config._attn_implementation
self.norm = BaichuanRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.gradient_checkpointing = True
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@add_start_docstrings_to_model_forward(Baichuan_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
seqlens: Optional[torch.LongTensor] = None,
past_key_values: Optional[CustomCache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError(
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
if seqlens is not None:
assert seqlens.ndim == 2
# batch multi-pack 样本拉平
cu_seqlens = []
offset, seqlen = 0, seqlens.size(1)
for lens in seqlens:
cu_seqlens.append(offset)
cu_seqlens.extend((lens[(lens > 0) & (lens < seqlen)] + offset).tolist())
offset += seqlen
cu_seqlens.append(offset)
seqlens = torch.tensor(cu_seqlens, dtype=torch.int32, device=input_ids.device)
# unset attention_mask to save memory
attention_mask = None
# kept for BC (non `Cache` `past_key_values` inputs)
return_legacy_cache = False
if use_cache and not isinstance(past_key_values, CustomCache):
return_legacy_cache = False
if past_key_values is None:
past_key_values = CustomCache()
else:
past_key_values = CustomCache.from_legacy_cache(past_key_values)
logger.warning_once(
"We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
"will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
"(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
)
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
# position_embeddings = self.rotary_emb(hidden_states, position_ids)
position_embeddings = None
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = torch.utils.checkpoint.checkpoint(
decoder_layer,
hidden_states,
causal_mask,
position_ids,
seqlens,
past_key_values,
output_attentions,
use_cache,
cache_position,
position_embeddings,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
seqlens=seqlens,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if return_legacy_cache:
next_cache = next_cache.to_legacy_cache()
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: CustomCache,
output_attentions: bool,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and 0.0 in attention_mask:
return attention_mask
return None
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
min_dtype = torch.finfo(dtype).min
sequence_length = input_tensor.shape[1]
if using_static_cache:
target_length = past_key_values.get_max_length()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
min_dtype=min_dtype,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type == "cuda"
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
class NormHead(nn.Module):
def __init__(self, hidden_size, vocab_size, bias=False):
super().__init__()
self.weight = nn.Parameter(torch.empty((vocab_size, hidden_size)))
nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
def forward(self, hidden_states):
norm_weight = nn.functional.normalize(self.weight)
return nn.functional.linear(hidden_states, norm_weight)
class BaichuanM1ForCausalLM(BaichuanPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = BaichuanModel(config)
self.vocab_size = config.vocab_size
self.lm_head = NormHead(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@add_start_docstrings_to_model_forward(Baichuan_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
seqlens: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
num_logits_to_keep: int = 0,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
num_logits_to_keep (`int`, *optional*):
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, BaichuanForCausalLM
>>> model = BaichuanForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None:
input_ids[input_ids == self.config.vocab_size] = 0
if labels is not None:
labels[labels == self.config.vocab_size] = 0
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
seqlens=seqlens,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
hidden_states = outputs[0]
if labels is None and not is_torchdynamo_compiling():
logger.warning_once(
"Starting from v4.46, the `logits` model output will have the same type as the model (except at train time, where it will always be FP32)"
)
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
# TODO: remove the float() operation in v4.46
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
loss = None
if labels is not None:
# Upcast to float if we need to compute the loss to avoid potential precision issues
# logits = logits.float()
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
#shift_logits = logits
#shift_labels = labels
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
cache_position=None,
position_ids=None,
use_cache=True,
num_logits_to_keep=None,
**kwargs,
):
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
# Exception 1: when passing input_embeds, input_ids may be missing entries
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
if past_key_values is not None:
if inputs_embeds is not None: # Exception 1
input_ids = input_ids[:, -cache_position.shape[0]:]
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
input_ids = input_ids[:, cache_position]
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1]:]
# This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture.
position_ids = position_ids.clone(memory_format=torch.contiguous_format)
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and cache_position[0] == 0:
model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None}
else:
# The clone here is for the same reason as for `position_ids`.
model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None}
if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2:
if model_inputs["inputs_embeds"] is not None:
batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape
device = model_inputs["inputs_embeds"].device
else:
batch_size, sequence_length = model_inputs["input_ids"].shape
device = model_inputs["input_ids"].device
dtype = self.lm_head.weight.dtype
min_dtype = torch.finfo(dtype).min
attention_mask = _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=past_key_values.get_max_length(),
dtype=dtype,
device=device,
min_dtype=min_dtype,
cache_position=cache_position,
batch_size=batch_size,
)
if num_logits_to_keep is not None:
model_inputs["num_logits_to_keep"] = num_logits_to_keep
model_inputs.update(
{
"position_ids": position_ids,
"cache_position": cache_position,
"past_key_values": past_key_values,
"use_cache": use_cache,
"attention_mask": attention_mask,
}
)
return model_inputs
@torch.no_grad()
def chat(self, tokenizer, messages: List[dict], stream=False,
generation_config: Optional[GenerationConfig] = None):
generation_config = generation_config or self.generation_config
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True)
input_ids = torch.LongTensor([input_ids]).to(self.device)
if stream:
streamer = TextIterStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
Thread(target=self.generate, kwargs=dict(
inputs=input_ids, streamer=streamer,
generation_config=generation_config,
)).start()
return streamer
else:
outputs = self.generate(input_ids, generation_config=generation_config)
response = tokenizer.decode(outputs[0][len(input_ids[0]):], skip_special_tokens=True)
return response