Commit
·
a1ee998
1
Parent(s):
c2549d7
Update README.md
Browse filesupdate inference case
README.md
CHANGED
@@ -35,9 +35,9 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
35 |
|
36 |
tokenizer = AutoTokenizer.from_pretrained("baichuan-inc/baichuan-7B", trust_remote_code=True)
|
37 |
model = AutoModelForCausalLM.from_pretrained("baichuan-inc/baichuan-7B", device_map="auto", trust_remote_code=True)
|
38 |
-
inputs = tokenizer('登鹳雀楼->王之涣\n
|
39 |
inputs = inputs.to('cuda:0')
|
40 |
-
pred = model.generate(**inputs, max_new_tokens=
|
41 |
print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
|
42 |
```
|
43 |
|
@@ -47,9 +47,9 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
47 |
|
48 |
tokenizer = AutoTokenizer.from_pretrained("baichuan-inc/baichuan-7B", trust_remote_code=True)
|
49 |
model = AutoModelForCausalLM.from_pretrained("baichuan-inc/baichuan-7B", device_map="auto", trust_remote_code=True)
|
50 |
-
inputs = tokenizer('Hamlet->Shakespeare\nOne Hundred Years of Solitude
|
51 |
inputs = inputs.to('cuda:0')
|
52 |
-
pred = model.generate(**inputs, max_new_tokens=
|
53 |
print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
|
54 |
```
|
55 |
|
|
|
35 |
|
36 |
tokenizer = AutoTokenizer.from_pretrained("baichuan-inc/baichuan-7B", trust_remote_code=True)
|
37 |
model = AutoModelForCausalLM.from_pretrained("baichuan-inc/baichuan-7B", device_map="auto", trust_remote_code=True)
|
38 |
+
inputs = tokenizer('登鹳雀楼->王之涣\n夜雨寄北->', return_tensors='pt')
|
39 |
inputs = inputs.to('cuda:0')
|
40 |
+
pred = model.generate(**inputs, max_new_tokens=64)
|
41 |
print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
|
42 |
```
|
43 |
|
|
|
47 |
|
48 |
tokenizer = AutoTokenizer.from_pretrained("baichuan-inc/baichuan-7B", trust_remote_code=True)
|
49 |
model = AutoModelForCausalLM.from_pretrained("baichuan-inc/baichuan-7B", device_map="auto", trust_remote_code=True)
|
50 |
+
inputs = tokenizer('Hamlet->Shakespeare\nOne Hundred Years of Solitude->', return_tensors='pt')
|
51 |
inputs = inputs.to('cuda:0')
|
52 |
+
pred = model.generate(**inputs, max_new_tokens=64)
|
53 |
print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
|
54 |
```
|
55 |
|