File size: 3,782 Bytes
6619972
850f547
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6619972
37cc05f
6619972
37cc05f
6619972
37cc05f
6619972
37cc05f
6619972
 
 
37cc05f
6619972
37cc05f
6619972
37cc05f
6619972
 
 
 
37cc05f
6619972
37cc05f
6619972
37cc05f
6619972
37cc05f
6619972
 
 
37cc05f
6619972
37cc05f
6619972
37cc05f
6619972
 
 
 
850f547
37cc05f
6619972
 
37cc05f
6619972
 
37cc05f
6619972
 
37cc05f
6619972
 
 
 
 
 
 
37cc05f
6619972
 
37cc05f
6619972
 
37cc05f
6619972
 
 
 
 
37cc05f
6619972
 
37cc05f
6619972
37cc05f
6619972
37cc05f
6619972
 
 
 
37cc05f
 
 
6619972
37cc05f
6619972
 
 
37cc05f
6619972
37cc05f
6619972
37cc05f
6619972
 
37cc05f
6619972
37cc05f
6619972
37cc05f
6619972
 
 
 
 
 
 
 
37cc05f
6619972
37cc05f
6619972
37cc05f
6619972
37cc05f
6619972
 
850f547
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
```markdown
---
tags:
- text-generation
- transformers
- opt-6.7b
- lora
license: mit
datasets:
- wikipedia
- bookcorpus
- openwebtext
- conversational
metrics:
- perplexity
- accuracy
---

# babelAI/opt-6.7b-lora

## Model Description

`babelAI/opt-6.7b-lora` is a variant of the OPT-6.7B model fine-tuned using LoRA (Low-Rank Adaptation) techniques. This model leverages the LoRA method to reduce the number of trainable parameters, allowing for efficient fine-tuning on domain-specific tasks without the need for extensive computational resources.

## Model Architecture

- **Base Model**: OPT-6.7B
- **Parameter Count**: 6.7 Billion
- **Fine-Tuning Method**: LoRA (Low-Rank Adaptation)

## Intended Use

This model is designed for a variety of natural language processing tasks, including but not limited to:

- Text generation
- Text completion
- Conversational AI
- Language translation

## How to Use

### Installation

First, ensure you have the `transformers` library installed:

```bash
pip install transformers
```

### Loading the Model

Here is an example of how to load and use the `babelAI/opt-6.7b-lora` model:

```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel, PeftConfig
from transformers import BitsAndBytesConfig

# Define the model ID
peft_model_id = "babelAI/opt-6.7b-lora"

# Load the configuration
config = PeftConfig.from_pretrained(peft_model_id)

# Define the quantization configuration for efficient loading
quantization_config = BitsAndBytesConfig(load_in_8bit=True)

# Load the base model with the quantization configuration
model = AutoModelForCausalLM.from_pretrained(
    config.base_model_name_or_path,
    return_dict=True,
    quantization_config=quantization_config,
    device_map='auto'
)

# Load the tokenizer
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)

# Load the LoRA model
model = PeftModel.from_pretrained(model, peft_model_id)

# Example usage
text = "Once upon a time"
inputs = tokenizer(text, return_tensors='pt')
outputs = model.generate(**inputs)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)

print(generated_text)
```

## Training Data

The model was fine-tuned on a diverse set of texts to ensure robust performance across different domains. The dataset includes a mixture of publicly available text corpora, including:

- Wikipedia
- Books
- News articles
- Conversational data

## Evaluation

The model was evaluated on several benchmarks to ensure its performance is up to standard. Below are some of the evaluation metrics:

- Perplexity on common text datasets
- Accuracy on specific language tasks
- Performance on custom benchmarks relevant to specific use cases

## Limitations and Biases

While `babelAI/opt-6.7b-lora` is a powerful model, it is important to be aware of its limitations:

- The model can generate biased or inappropriate content, reflecting biases present in the training data.
- It may not perform well on highly specialized or niche topics without further fine-tuning.

## Citation

If you use this model in your research, please cite it as follows:

```bibtex
@misc{babelAI2024opt67blora,
  author = {babelAI Team},
  title = {babelAI/opt-6.7b-lora: A LoRA Fine-Tuned Model},
  year = {2024},
  howpublished = {\url{https://huggingface.co/babelAI/opt-6.7b-lora}},
}
```

## License

This model is licensed under the MIT License.

## Contact Information

For more information or questions, please contact the babelAI team at [[email protected]].
```

### Explanation:

- **tags**: Keywords related to the model.
- **license**: The license under which the model is distributed.
- **datasets**: Datasets used to train the model.
- **metrics**: Metrics used to evaluate the model.