File size: 3,526 Bytes
bbea1d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
---
license: apache-2.0
base_model: microsoft/cvt-21-384-22k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: cvt-21-384-22k-finetuned-LeafBack
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: validation
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.961038961038961
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# cvt-21-384-22k-finetuned-LeafBack
This model is a fine-tuned version of [microsoft/cvt-21-384-22k](https://huggingface.co/microsoft/cvt-21-384-22k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1357
- Accuracy: 0.9610
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 40
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 16 | 0.4915 | 0.7662 |
| No log | 2.0 | 32 | 0.4215 | 0.7922 |
| No log | 3.0 | 48 | 0.3265 | 0.8831 |
| No log | 4.0 | 64 | 0.2275 | 0.8961 |
| No log | 5.0 | 80 | 0.2464 | 0.8571 |
| No log | 6.0 | 96 | 0.2023 | 0.9091 |
| No log | 7.0 | 112 | 0.2282 | 0.8961 |
| No log | 8.0 | 128 | 0.1933 | 0.9091 |
| No log | 9.0 | 144 | 0.2563 | 0.8701 |
| No log | 10.0 | 160 | 0.1911 | 0.9091 |
| No log | 11.0 | 176 | 0.2113 | 0.9351 |
| No log | 12.0 | 192 | 0.1680 | 0.9221 |
| No log | 13.0 | 208 | 0.2042 | 0.9351 |
| No log | 14.0 | 224 | 0.1466 | 0.9221 |
| No log | 15.0 | 240 | 0.1277 | 0.9351 |
| No log | 16.0 | 256 | 0.1558 | 0.9351 |
| No log | 17.0 | 272 | 0.1407 | 0.9221 |
| No log | 18.0 | 288 | 0.1538 | 0.9351 |
| No log | 19.0 | 304 | 0.1735 | 0.9221 |
| No log | 20.0 | 320 | 0.1640 | 0.9481 |
| No log | 21.0 | 336 | 0.1774 | 0.9221 |
| No log | 22.0 | 352 | 0.1369 | 0.9481 |
| No log | 23.0 | 368 | 0.1503 | 0.9481 |
| No log | 24.0 | 384 | 0.2836 | 0.9221 |
| No log | 25.0 | 400 | 0.1777 | 0.9221 |
| No log | 26.0 | 416 | 0.1820 | 0.9351 |
| No log | 27.0 | 432 | 0.1260 | 0.9481 |
| No log | 28.0 | 448 | 0.1539 | 0.9221 |
| No log | 29.0 | 464 | 0.1622 | 0.9481 |
| No log | 30.0 | 480 | 0.1357 | 0.9610 |
### Framework versions
- Transformers 4.38.1
- Pytorch 1.10.0+cu111
- Datasets 2.17.1
- Tokenizers 0.15.2
|