Upload with huggingface_hub
Browse files- 1_Pooling/config.json +7 -0
- README.md +126 -0
- config.json +26 -0
- config_sentence_transformers.json +7 -0
- eval/binary_classification_evaluation_results.csv +10 -0
- modules.json +14 -0
- pytorch_model.bin +3 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +14 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
README.md
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pipeline_tag: sentence-similarity
|
3 |
+
tags:
|
4 |
+
- sentence-transformers
|
5 |
+
- feature-extraction
|
6 |
+
- sentence-similarity
|
7 |
+
- transformers
|
8 |
+
|
9 |
+
---
|
10 |
+
|
11 |
+
# {MODEL_NAME}
|
12 |
+
|
13 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
14 |
+
|
15 |
+
<!--- Describe your model here -->
|
16 |
+
|
17 |
+
## Usage (Sentence-Transformers)
|
18 |
+
|
19 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
20 |
+
|
21 |
+
```
|
22 |
+
pip install -U sentence-transformers
|
23 |
+
```
|
24 |
+
|
25 |
+
Then you can use the model like this:
|
26 |
+
|
27 |
+
```python
|
28 |
+
from sentence_transformers import SentenceTransformer
|
29 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
30 |
+
|
31 |
+
model = SentenceTransformer('{MODEL_NAME}')
|
32 |
+
embeddings = model.encode(sentences)
|
33 |
+
print(embeddings)
|
34 |
+
```
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
## Usage (HuggingFace Transformers)
|
39 |
+
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
40 |
+
|
41 |
+
```python
|
42 |
+
from transformers import AutoTokenizer, AutoModel
|
43 |
+
import torch
|
44 |
+
|
45 |
+
|
46 |
+
#Mean Pooling - Take attention mask into account for correct averaging
|
47 |
+
def mean_pooling(model_output, attention_mask):
|
48 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
49 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
50 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
51 |
+
|
52 |
+
|
53 |
+
# Sentences we want sentence embeddings for
|
54 |
+
sentences = ['This is an example sentence', 'Each sentence is converted']
|
55 |
+
|
56 |
+
# Load model from HuggingFace Hub
|
57 |
+
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
|
58 |
+
model = AutoModel.from_pretrained('{MODEL_NAME}')
|
59 |
+
|
60 |
+
# Tokenize sentences
|
61 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
62 |
+
|
63 |
+
# Compute token embeddings
|
64 |
+
with torch.no_grad():
|
65 |
+
model_output = model(**encoded_input)
|
66 |
+
|
67 |
+
# Perform pooling. In this case, mean pooling.
|
68 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
69 |
+
|
70 |
+
print("Sentence embeddings:")
|
71 |
+
print(sentence_embeddings)
|
72 |
+
```
|
73 |
+
|
74 |
+
|
75 |
+
|
76 |
+
## Evaluation Results
|
77 |
+
|
78 |
+
<!--- Describe how your model was evaluated -->
|
79 |
+
|
80 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
81 |
+
|
82 |
+
|
83 |
+
## Training
|
84 |
+
The model was trained with the parameters:
|
85 |
+
|
86 |
+
**DataLoader**:
|
87 |
+
|
88 |
+
`torch.utils.data.dataloader.DataLoader` of length 506 with parameters:
|
89 |
+
```
|
90 |
+
{'batch_size': 512, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
91 |
+
```
|
92 |
+
|
93 |
+
**Loss**:
|
94 |
+
|
95 |
+
`sentence_transformers.losses.OnlineContrastiveLoss.OnlineContrastiveLoss`
|
96 |
+
|
97 |
+
Parameters of the fit()-Method:
|
98 |
+
```
|
99 |
+
{
|
100 |
+
"epochs": 3,
|
101 |
+
"evaluation_steps": 250,
|
102 |
+
"evaluator": "sentence_transformers.evaluation.BinaryClassificationEvaluator.BinaryClassificationEvaluator",
|
103 |
+
"max_grad_norm": 1,
|
104 |
+
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
|
105 |
+
"optimizer_params": {
|
106 |
+
"lr": 2e-05
|
107 |
+
},
|
108 |
+
"scheduler": "WarmupLinear",
|
109 |
+
"steps_per_epoch": null,
|
110 |
+
"warmup_steps": 50,
|
111 |
+
"weight_decay": 0.01
|
112 |
+
}
|
113 |
+
```
|
114 |
+
|
115 |
+
|
116 |
+
## Full Model Architecture
|
117 |
+
```
|
118 |
+
SentenceTransformer(
|
119 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
120 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
121 |
+
)
|
122 |
+
```
|
123 |
+
|
124 |
+
## Citing & Authors
|
125 |
+
|
126 |
+
<!--- Describe where people can find more information -->
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "bert-base-uncased",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.20.1",
|
23 |
+
"type_vocab_size": 2,
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 30522
|
26 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.2.2",
|
4 |
+
"transformers": "4.20.1",
|
5 |
+
"pytorch": "1.11.0"
|
6 |
+
}
|
7 |
+
}
|
eval/binary_classification_evaluation_results.csv
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
epoch,steps,cossim_accuracy,cossim_accuracy_threshold,cossim_f1,cossim_precision,cossim_recall,cossim_f1_threshold,cossim_ap,manhattan_accuracy,manhattan_accuracy_threshold,manhattan_f1,manhattan_precision,manhattan_recall,manhattan_f1_threshold,manhattan_ap,euclidean_accuracy,euclidean_accuracy_threshold,euclidean_f1,euclidean_precision,euclidean_recall,euclidean_f1_threshold,euclidean_ap,dot_accuracy,dot_accuracy_threshold,dot_f1,dot_precision,dot_recall,dot_f1_threshold,dot_ap
|
2 |
+
0,250,0.9968473759040614,0.819008469581604,0.4102564102564102,0.345679012345679,0.5045045045045045,0.6200909614562988,0.32367631179329875,0.9968473759040614,155.64419555664062,0.3880597014925374,0.43333333333333335,0.35135135135135137,186.0501251220703,0.29794185057979755,0.9968473759040614,7.0642805099487305,0.3781094527363184,0.4222222222222222,0.34234234234234234,8.470755577087402,0.29787611303670497,0.9967855597453175,108.98558807373047,0.29268292682926833,0.23863636363636365,0.3783783783783784,71.06520080566406,0.22575220202572693
|
3 |
+
0,500,0.9968164678246894,0.8198140263557434,0.4298245614035088,0.4188034188034188,0.44144144144144143,0.642940104007721,0.34250682190321907,0.9969401001421772,142.98379516601562,0.3980099502487562,0.4444444444444444,0.36036036036036034,174.25442504882812,0.31950985747490374,0.9969091920628053,6.795235633850098,0.39423076923076916,0.422680412371134,0.36936936936936937,7.996814727783203,0.32203209169038804,0.9967855597453175,82.6785659790039,0.30357142857142855,0.3008849557522124,0.3063063063063063,62.52280807495117,0.2418150530354318
|
4 |
+
0,-1,0.9968164678246894,0.7224494218826294,0.4338624338624339,0.5256410256410257,0.36936936936936937,0.6594376564025879,0.34490882334069173,0.9969710082215492,145.15773010253906,0.39423076923076916,0.422680412371134,0.36936936936936937,177.75613403320312,0.3188573275632005,0.9969401001421772,6.699878692626953,0.3921568627450981,0.43010752688172044,0.36036036036036034,8.037707328796387,0.31991715452382996,0.9967855597453175,81.75849914550781,0.32340425531914896,0.3064516129032258,0.34234234234234234,61.235633850097656,0.24605959956453338
|
5 |
+
1,250,0.9969091920628053,0.7172892689704895,0.46031746031746035,0.41134751773049644,0.5225225225225225,0.6217999458312988,0.36497312895504797,0.9969401001421772,156.0782470703125,0.3908045977011494,0.5396825396825397,0.3063063063063063,163.83856201171875,0.3166861275735117,0.9969401001421772,7.0155110359191895,0.39548022598870053,0.5303030303030303,0.3153153153153153,7.511675834655762,0.3197920851680463,0.9967855597453175,83.52542114257812,0.36815920398009944,0.4111111111111111,0.3333333333333333,59.910614013671875,0.27654843727008993
|
6 |
+
1,500,0.997001916300921,0.7830982208251953,0.45,0.4186046511627907,0.4864864864864865,0.6362024545669556,0.39596447586274913,0.9971255486184089,162.73956298828125,0.42553191489361697,0.5194805194805194,0.36036036036036034,193.948974609375,0.35837996324319654,0.997094640539037,7.368961334228516,0.419889502762431,0.5428571428571428,0.34234234234234234,8.703409194946289,0.35992751726116046,0.9967855597453175,119.95298767089844,0.3770491803278688,0.3458646616541353,0.4144144144144144,85.48049926757812,0.27671355760614064
|
7 |
+
1,-1,0.9970328243802931,0.7790623903274536,0.45248868778280543,0.45454545454545453,0.45045045045045046,0.649742841720581,0.3967334612979909,0.9971255486184089,164.37477111816406,0.43478260869565216,0.547945205479452,0.36036036036036034,194.60169982910156,0.36005183240496497,0.997094640539037,7.443972110748291,0.4193548387096775,0.52,0.35135135135135137,8.877153396606445,0.36147808839241424,0.9967855597453175,118.86785888671875,0.37362637362637363,0.3148148148148148,0.4594594594594595,81.50203704833984,0.2820114803025444
|
8 |
+
2,250,0.9970328243802931,0.706745982170105,0.4522613065326634,0.5113636363636364,0.40540540540540543,0.657722532749176,0.3995700475996162,0.997063732459665,160.36976623535156,0.4210526315789474,0.5063291139240507,0.36036036036036034,195.18704223632812,0.3542026783176512,0.997063732459665,7.276709079742432,0.42487046632124353,0.5,0.36936936936936937,8.84858512878418,0.35917689555660137,0.9968164678246894,98.19419860839844,0.3594470046082949,0.36792452830188677,0.35135135135135137,82.72917175292969,0.270701333946961
|
9 |
+
2,500,0.997094640539037,0.7525038123130798,0.4597701149425287,0.6349206349206349,0.36036036036036034,0.6907355785369873,0.41282746676524545,0.997094640539037,174.91311645507812,0.43157894736842106,0.5189873417721519,0.36936936936936937,194.66091918945312,0.3647998616562449,0.997094640539037,7.828941345214844,0.4222222222222222,0.5507246376811594,0.34234234234234234,8.725908279418945,0.3687708893008705,0.9968164678246894,118.57579803466797,0.36507936507936506,0.3262411347517731,0.4144144144144144,79.40945434570312,0.2844228222857304
|
10 |
+
2,-1,0.997094640539037,0.7525147199630737,0.4597701149425287,0.6349206349206349,0.36036036036036034,0.6907644867897034,0.412820964683786,0.997094640539037,174.91392517089844,0.43157894736842106,0.5189873417721519,0.36936936936936937,194.65829467773438,0.36480363906928015,0.997094640539037,7.829055309295654,0.4222222222222222,0.5507246376811594,0.34234234234234234,8.725940704345703,0.3687681562467502,0.9968164678246894,118.57998657226562,0.36507936507936506,0.3262411347517731,0.4144144144144144,79.41696166992188,0.28434837275829544
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bdfd3f6b7e68503383b27c85768ca75ce81f1a24da2bb88e0ee099ebd030dab2
|
3 |
+
size 437998385
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 128,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"do_lower_case": true,
|
4 |
+
"mask_token": "[MASK]",
|
5 |
+
"model_max_length": 512,
|
6 |
+
"name_or_path": "bert-base-uncased",
|
7 |
+
"pad_token": "[PAD]",
|
8 |
+
"sep_token": "[SEP]",
|
9 |
+
"special_tokens_map_file": null,
|
10 |
+
"strip_accents": null,
|
11 |
+
"tokenize_chinese_chars": true,
|
12 |
+
"tokenizer_class": "BertTokenizer",
|
13 |
+
"unk_token": "[UNK]"
|
14 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|