ayameRushia commited on
Commit
020b9cc
·
1 Parent(s): e9a0729

Training in progress, step 400

Browse files
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ checkpoint-*/
.ipynb_checkpoints/eval-checkpoint.py ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ from datasets import load_dataset, load_metric, Audio, Dataset
3
+ from transformers import pipeline, AutoFeatureExtractor
4
+ import re
5
+ import argparse
6
+ import unicodedata
7
+ from typing import Dict
8
+
9
+
10
+ def log_results(result: Dataset, args: Dict[str, str]):
11
+ """ DO NOT CHANGE. This function computes and logs the result metrics. """
12
+
13
+ log_outputs = args.log_outputs
14
+ dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split])
15
+
16
+ # load metric
17
+ wer = load_metric("wer")
18
+ cer = load_metric("cer")
19
+
20
+ # compute metrics
21
+ wer_result = wer.compute(references=result["target"], predictions=result["prediction"])
22
+ cer_result = cer.compute(references=result["target"], predictions=result["prediction"])
23
+
24
+ # print & log results
25
+ result_str = (
26
+ f"WER: {wer_result}\n"
27
+ f"CER: {cer_result}"
28
+ )
29
+ print(result_str)
30
+
31
+ with open(f"{dataset_id}_eval_results.txt", "w") as f:
32
+ f.write(result_str)
33
+
34
+ # log all results in text file. Possibly interesting for analysis
35
+ if log_outputs is not None:
36
+ pred_file = f"log_{dataset_id}_predictions.txt"
37
+ target_file = f"log_{dataset_id}_targets.txt"
38
+
39
+ with open(pred_file, "w") as p, open(target_file, "w") as t:
40
+
41
+ # mapping function to write output
42
+ def write_to_file(batch, i):
43
+ p.write(f"{i}" + "\n")
44
+ p.write(batch["prediction"] + "\n")
45
+ t.write(f"{i}" + "\n")
46
+ t.write(batch["target"] + "\n")
47
+
48
+ result.map(write_to_file, with_indices=True)
49
+
50
+
51
+ def normalize_text(text: str) -> str:
52
+ """ DO ADAPT FOR YOUR USE CASE. this function normalizes the target text. """
53
+
54
+ chars_to_ignore_regex = '[\é\!\,\,\?\.\!\-\;\:\"\“\%\‘\”\�\'\’\—\–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
55
+
56
+ text = text.lower()
57
+ # normalize non-standard (stylized) unicode characters
58
+ text = unicodedata.normalize('NFKC', text)
59
+ # remove punctuation
60
+ text = re.sub(chars_to_ignore_regex, "", text)
61
+
62
+ # Let's also make sure we split on all kinds of newlines, spaces, etc...
63
+ text = " ".join(text.split())
64
+
65
+ return text
66
+
67
+
68
+ def main(args):
69
+ # load dataset
70
+ dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True)
71
+
72
+ # for testing: only process the first two examples as a test
73
+ # dataset = dataset.select(range(10))
74
+
75
+ # load processor
76
+ feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id)
77
+ sampling_rate = feature_extractor.sampling_rate
78
+
79
+ # resample audio
80
+ dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate))
81
+
82
+ # load eval pipeline
83
+ asr = pipeline("automatic-speech-recognition", model=args.model_id)
84
+
85
+ # map function to decode audio
86
+ def map_to_pred(batch):
87
+ prediction = asr(batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s)
88
+
89
+ batch["prediction"] = prediction["text"]
90
+ batch["target"] = normalize_text(batch["sentence"])
91
+ return batch
92
+
93
+ # run inference on all examples
94
+ result = dataset.map(map_to_pred, remove_columns=dataset.column_names)
95
+
96
+ # compute and log_results
97
+ # do not change function below
98
+ log_results(result, args)
99
+
100
+
101
+ if __name__ == "__main__":
102
+ parser = argparse.ArgumentParser()
103
+
104
+ parser.add_argument(
105
+ "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
106
+ )
107
+ parser.add_argument(
108
+ "--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets"
109
+ )
110
+ parser.add_argument(
111
+ "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
112
+ )
113
+ parser.add_argument(
114
+ "--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`"
115
+ )
116
+ parser.add_argument(
117
+ "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to None. For long audio files a good value would be 5.0 seconds."
118
+ )
119
+ parser.add_argument(
120
+ "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to None. For long audio files a good value would be 1.0 seconds."
121
+ )
122
+ parser.add_argument(
123
+ "--log_outputs", action='store_true', help="If defined, write outputs to log file for analysis."
124
+ )
125
+ args = parser.parse_args()
126
+
127
+ main(args)
.ipynb_checkpoints/run-checkpoint.sh ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ python run_speech_recognition_ctc.py \
2
+ --dataset_name="mozilla-foundation/common_voice_8_0" \
3
+ --model_name_or_path="facebook/wav2vec2-xls-r-300m" \
4
+ --dataset_config_name="id" \
5
+ --output_dir="./" \
6
+ --overwrite_output_dir \
7
+ --num_train_epochs="30" \
8
+ --per_device_train_batch_size="32" \
9
+ --gradient_accumulation_steps="2" \
10
+ --learning_rate="3e-4" \
11
+ --warmup_steps="500" \
12
+ --evaluation_strategy="steps" \
13
+ --text_column_name="sentence" \
14
+ --length_column_name="input_length" \
15
+ --save_steps="400" \
16
+ --eval_steps="100" \
17
+ --layerdrop="0.0" \
18
+ --save_total_limit="2" \
19
+ --freeze_feature_encoder \
20
+ --gradient_checkpointing \
21
+ --fp16 \
22
+ --group_by_length \
23
+ --push_to_hub \
24
+ --do_train --do_eval
.ipynb_checkpoints/run_eval-checkpoint.sh ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ python eval.py \
2
+ --dataset="mozilla-foundation/common_voice_8_0" \
3
+ --model_id="ayameRushia/wav2vec2-large-xls-r-300m-id" \
4
+ --config="id" \
5
+ --split="test"
.ipynb_checkpoints/run_speech_recognition_ctc-checkpoint.py ADDED
@@ -0,0 +1,743 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding=utf-8
3
+ # Copyright 2021 The HuggingFace Inc. team. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+
16
+ """ Fine-tuning a 🤗 Transformers CTC model for automatic speech recognition"""
17
+
18
+ import functools
19
+ import json
20
+ import logging
21
+ import os
22
+ import re
23
+ import sys
24
+ import warnings
25
+ from dataclasses import dataclass, field
26
+ from typing import Dict, List, Optional, Union
27
+
28
+ import datasets
29
+ import numpy as np
30
+ import torch
31
+ from datasets import DatasetDict, load_dataset, load_metric
32
+
33
+ import transformers
34
+ from transformers import (
35
+ AutoConfig,
36
+ AutoFeatureExtractor,
37
+ AutoModelForCTC,
38
+ AutoProcessor,
39
+ AutoTokenizer,
40
+ HfArgumentParser,
41
+ Trainer,
42
+ TrainingArguments,
43
+ Wav2Vec2Processor,
44
+ set_seed,
45
+ )
46
+ from transformers.trainer_utils import get_last_checkpoint, is_main_process
47
+ from transformers.utils import check_min_version
48
+ from transformers.utils.versions import require_version
49
+
50
+
51
+ # Will error if the minimal version of Transformers is not installed. Remove at your own risks.
52
+ check_min_version("4.17.0.dev0")
53
+
54
+ require_version("datasets>=1.13.3", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
55
+
56
+
57
+ logger = logging.getLogger(__name__)
58
+
59
+
60
+ def list_field(default=None, metadata=None):
61
+ return field(default_factory=lambda: default, metadata=metadata)
62
+
63
+
64
+ @dataclass
65
+ class ModelArguments:
66
+ """
67
+ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
68
+ """
69
+
70
+ model_name_or_path: str = field(
71
+ metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
72
+ )
73
+ tokenizer_name_or_path: Optional[str] = field(
74
+ default=None,
75
+ metadata={"help": "Path to pretrained tokenizer or tokenizer identifier from huggingface.co/models"},
76
+ )
77
+ cache_dir: Optional[str] = field(
78
+ default=None,
79
+ metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
80
+ )
81
+ freeze_feature_encoder: bool = field(
82
+ default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."}
83
+ )
84
+ attention_dropout: float = field(
85
+ default=0.0, metadata={"help": "The dropout ratio for the attention probabilities."}
86
+ )
87
+ activation_dropout: float = field(
88
+ default=0.0, metadata={"help": "The dropout ratio for activations inside the fully connected layer."}
89
+ )
90
+ feat_proj_dropout: float = field(default=0.0, metadata={"help": "The dropout ratio for the projected features."})
91
+ hidden_dropout: float = field(
92
+ default=0.0,
93
+ metadata={
94
+ "help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
95
+ },
96
+ )
97
+ final_dropout: float = field(
98
+ default=0.0,
99
+ metadata={"help": "The dropout probability for the final projection layer."},
100
+ )
101
+ mask_time_prob: float = field(
102
+ default=0.05,
103
+ metadata={
104
+ "help": "Probability of each feature vector along the time axis to be chosen as the start of the vector"
105
+ "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature"
106
+ "vectors will be masked along the time axis."
107
+ },
108
+ )
109
+ mask_time_length: int = field(
110
+ default=10,
111
+ metadata={"help": "Length of vector span to mask along the time axis."},
112
+ )
113
+ mask_feature_prob: float = field(
114
+ default=0.0,
115
+ metadata={
116
+ "help": "Probability of each feature vector along the feature axis to be chosen as the start of the vector"
117
+ "span to be masked. Approximately ``mask_feature_prob * sequence_length // mask_feature_length`` feature bins will be masked along the time axis."
118
+ },
119
+ )
120
+ mask_feature_length: int = field(
121
+ default=10,
122
+ metadata={"help": "Length of vector span to mask along the feature axis."},
123
+ )
124
+ layerdrop: float = field(default=0.0, metadata={"help": "The LayerDrop probability."})
125
+ ctc_loss_reduction: Optional[str] = field(
126
+ default="mean", metadata={"help": "The way the ctc loss should be reduced. Should be one of 'mean' or 'sum'."}
127
+ )
128
+
129
+
130
+ @dataclass
131
+ class DataTrainingArguments:
132
+ """
133
+ Arguments pertaining to what data we are going to input our model for training and eval.
134
+
135
+ Using `HfArgumentParser` we can turn this class
136
+ into argparse arguments to be able to specify them on
137
+ the command line.
138
+ """
139
+
140
+ dataset_name: str = field(
141
+ metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
142
+ )
143
+ dataset_config_name: str = field(
144
+ default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
145
+ )
146
+ train_split_name: str = field(
147
+ default="train+validation",
148
+ metadata={
149
+ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
150
+ },
151
+ )
152
+ eval_split_name: str = field(
153
+ default="test",
154
+ metadata={
155
+ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'test'"
156
+ },
157
+ )
158
+ audio_column_name: str = field(
159
+ default="audio",
160
+ metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
161
+ )
162
+ text_column_name: str = field(
163
+ default="text",
164
+ metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"},
165
+ )
166
+ overwrite_cache: bool = field(
167
+ default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
168
+ )
169
+ preprocessing_num_workers: Optional[int] = field(
170
+ default=None,
171
+ metadata={"help": "The number of processes to use for the preprocessing."},
172
+ )
173
+ max_train_samples: Optional[int] = field(
174
+ default=None,
175
+ metadata={
176
+ "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
177
+ "value if set."
178
+ },
179
+ )
180
+ max_eval_samples: Optional[int] = field(
181
+ default=None,
182
+ metadata={
183
+ "help": "For debugging purposes or quicker training, truncate the number of validation examples to this "
184
+ "value if set."
185
+ },
186
+ )
187
+ chars_to_ignore: Optional[List[str]] = list_field(
188
+ default=None,
189
+ metadata={"help": "A list of characters to remove from the transcripts."},
190
+ )
191
+ eval_metrics: List[str] = list_field(
192
+ default=["wer"],
193
+ metadata={"help": "A list of metrics the model should be evaluated on. E.g. `'wer cer'`"},
194
+ )
195
+ max_duration_in_seconds: float = field(
196
+ default=20.0,
197
+ metadata={
198
+ "help": "Filter audio files that are longer than `max_duration_in_seconds` seconds to 'max_duration_in_seconds`"
199
+ },
200
+ )
201
+ min_duration_in_seconds: float = field(
202
+ default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
203
+ )
204
+ preprocessing_only: bool = field(
205
+ default=False,
206
+ metadata={
207
+ "help": "Whether to only do data preprocessing and skip training. "
208
+ "This is especially useful when data preprocessing errors out in distributed training due to timeout. "
209
+ "In this case, one should run the preprocessing in a non-distributed setup with `preprocessing_only=True` "
210
+ "so that the cached datasets can consequently be loaded in distributed training"
211
+ },
212
+ )
213
+ use_auth_token: bool = field(
214
+ default=False,
215
+ metadata={
216
+ "help": "If :obj:`True`, will use the token generated when running"
217
+ ":obj:`transformers-cli login` as HTTP bearer authorization for remote files."
218
+ },
219
+ )
220
+ unk_token: str = field(
221
+ default="[UNK]",
222
+ metadata={"help": "The unk token for the tokenizer"},
223
+ )
224
+ pad_token: str = field(
225
+ default="[PAD]",
226
+ metadata={"help": "The padding token for the tokenizer"},
227
+ )
228
+ word_delimiter_token: str = field(
229
+ default="|",
230
+ metadata={"help": "The word delimiter token for the tokenizer"},
231
+ )
232
+ phoneme_language: Optional[str] = field(
233
+ default=None,
234
+ metadata={
235
+ "help": "The target language that should be used be"
236
+ " passed to the tokenizer for tokenization. Note that"
237
+ " this is only relevant if the model classifies the"
238
+ " input audio to a sequence of phoneme sequences."
239
+ },
240
+ )
241
+
242
+
243
+ @dataclass
244
+ class DataCollatorCTCWithPadding:
245
+ """
246
+ Data collator that will dynamically pad the inputs received.
247
+ Args:
248
+ processor (:class:`~transformers.AutoProcessor`)
249
+ The processor used for proccessing the data.
250
+ padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
251
+ Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
252
+ among:
253
+ * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
254
+ sequence if provided).
255
+ * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
256
+ maximum acceptable input length for the model if that argument is not provided.
257
+ * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
258
+ different lengths).
259
+ max_length (:obj:`int`, `optional`):
260
+ Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
261
+ max_length_labels (:obj:`int`, `optional`):
262
+ Maximum length of the ``labels`` returned list and optionally padding length (see above).
263
+ pad_to_multiple_of (:obj:`int`, `optional`):
264
+ If set will pad the sequence to a multiple of the provided value.
265
+ This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
266
+ 7.5 (Volta).
267
+ """
268
+
269
+ processor: AutoProcessor
270
+ padding: Union[bool, str] = "longest"
271
+ pad_to_multiple_of: Optional[int] = None
272
+ pad_to_multiple_of_labels: Optional[int] = None
273
+
274
+ def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
275
+ # split inputs and labels since they have to be of different lenghts and need
276
+ # different padding methods
277
+ input_features = [{"input_values": feature["input_values"]} for feature in features]
278
+ label_features = [{"input_ids": feature["labels"]} for feature in features]
279
+
280
+ batch = self.processor.pad(
281
+ input_features,
282
+ padding=self.padding,
283
+ pad_to_multiple_of=self.pad_to_multiple_of,
284
+ return_tensors="pt",
285
+ )
286
+
287
+ with self.processor.as_target_processor():
288
+ labels_batch = self.processor.pad(
289
+ label_features,
290
+ padding=self.padding,
291
+ pad_to_multiple_of=self.pad_to_multiple_of_labels,
292
+ return_tensors="pt",
293
+ )
294
+
295
+ # replace padding with -100 to ignore loss correctly
296
+ labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
297
+
298
+ batch["labels"] = labels
299
+
300
+ return batch
301
+
302
+
303
+ def create_vocabulary_from_data(
304
+ datasets: DatasetDict,
305
+ word_delimiter_token: Optional[str] = None,
306
+ unk_token: Optional[str] = None,
307
+ pad_token: Optional[str] = None,
308
+ ):
309
+ # Given training and test labels create vocabulary
310
+ def extract_all_chars(batch):
311
+ all_text = " ".join(batch["target_text"])
312
+ vocab = list(set(all_text))
313
+ return {"vocab": [vocab], "all_text": [all_text]}
314
+
315
+ vocabs = datasets.map(
316
+ extract_all_chars,
317
+ batched=True,
318
+ batch_size=-1,
319
+ keep_in_memory=True,
320
+ remove_columns=datasets["train"].column_names,
321
+ )
322
+
323
+ # take union of all unique characters in each dataset
324
+ vocab_set = functools.reduce(
325
+ lambda vocab_1, vocab_2: set(vocab_1["vocab"][0]) | set(vocab_2["vocab"][0]), vocabs.values()
326
+ )
327
+
328
+ vocab_dict = {v: k for k, v in enumerate(sorted(list(vocab_set)))}
329
+
330
+ # replace white space with delimiter token
331
+ if word_delimiter_token is not None:
332
+ vocab_dict[word_delimiter_token] = vocab_dict[" "]
333
+ del vocab_dict[" "]
334
+
335
+ # add unk and pad token
336
+ if unk_token is not None:
337
+ vocab_dict[unk_token] = len(vocab_dict)
338
+
339
+ if pad_token is not None:
340
+ vocab_dict[pad_token] = len(vocab_dict)
341
+
342
+ return vocab_dict
343
+
344
+
345
+ def main():
346
+ # See all possible arguments in src/transformers/training_args.py
347
+ # or by passing the --help flag to this script.
348
+ # We now keep distinct sets of args, for a cleaner separation of concerns.
349
+
350
+ parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
351
+ if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
352
+ # If we pass only one argument to the script and it's the path to a json file,
353
+ # let's parse it to get our arguments.
354
+ model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
355
+ else:
356
+ model_args, data_args, training_args = parser.parse_args_into_dataclasses()
357
+
358
+ # Detecting last checkpoint.
359
+ last_checkpoint = None
360
+ if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
361
+ last_checkpoint = get_last_checkpoint(training_args.output_dir)
362
+ if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
363
+ raise ValueError(
364
+ f"Output directory ({training_args.output_dir}) already exists and is not empty. "
365
+ "Use --overwrite_output_dir to overcome."
366
+ )
367
+ elif last_checkpoint is not None:
368
+ logger.info(
369
+ f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
370
+ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
371
+ )
372
+
373
+ # Setup logging
374
+ logging.basicConfig(
375
+ format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
376
+ datefmt="%m/%d/%Y %H:%M:%S",
377
+ handlers=[logging.StreamHandler(sys.stdout)],
378
+ )
379
+ logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
380
+
381
+ # Log on each process the small summary:
382
+ logger.warning(
383
+ f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
384
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
385
+ )
386
+ # Set the verbosity to info of the Transformers logger (on main process only):
387
+ if is_main_process(training_args.local_rank):
388
+ transformers.utils.logging.set_verbosity_info()
389
+ logger.info("Training/evaluation parameters %s", training_args)
390
+
391
+ # Set seed before initializing model.
392
+ set_seed(training_args.seed)
393
+
394
+ # 1. First, let's load the dataset
395
+ raw_datasets = DatasetDict()
396
+
397
+ if training_args.do_train:
398
+ raw_datasets["train"] = load_dataset(
399
+ data_args.dataset_name,
400
+ data_args.dataset_config_name,
401
+ split=data_args.train_split_name,
402
+ use_auth_token=data_args.use_auth_token,
403
+ )
404
+
405
+ if data_args.audio_column_name not in raw_datasets["train"].column_names:
406
+ raise ValueError(
407
+ f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
408
+ "Make sure to set `--audio_column_name` to the correct audio column - one of "
409
+ f"{', '.join(raw_datasets['train'].column_names)}."
410
+ )
411
+
412
+ if data_args.text_column_name not in raw_datasets["train"].column_names:
413
+ raise ValueError(
414
+ f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
415
+ "Make sure to set `--text_column_name` to the correct text column - one of "
416
+ f"{', '.join(raw_datasets['train'].column_names)}."
417
+ )
418
+
419
+ if data_args.max_train_samples is not None:
420
+ raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))
421
+
422
+ if training_args.do_eval:
423
+ raw_datasets["eval"] = load_dataset(
424
+ data_args.dataset_name,
425
+ data_args.dataset_config_name,
426
+ split=data_args.eval_split_name,
427
+ use_auth_token=data_args.use_auth_token,
428
+ )
429
+
430
+ if data_args.max_eval_samples is not None:
431
+ raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples))
432
+
433
+ # 2. We remove some special characters from the datasets
434
+ # that make training complicated and do not help in transcribing the speech
435
+ # E.g. characters, such as `,` and `.` do not really have an acoustic characteristic
436
+ # that could be easily picked up by the model
437
+ chars_to_ignore_regex = '[\é\!\,\,\?\.\!\-\;\:\"\“\%\‘\”\�\'\’\—\–]'
438
+ text_column_name = data_args.text_column_name
439
+
440
+ def remove_special_characters(batch):
441
+ if chars_to_ignore_regex is not None:
442
+ batch["target_text"] = re.sub(chars_to_ignore_regex, "", batch[text_column_name]).lower() + " "
443
+ else:
444
+ batch["target_text"] = batch[text_column_name].lower() + " "
445
+ batch["target_text"] = re.sub('[â]', 'a', batch[text_column_name]).lower() + " "
446
+ batch["target_text"] = re.sub('[î]', 'i', batch[text_column_name]).lower() + " "
447
+ batch["target_text"] = re.sub('[ô]', 'o', batch[text_column_name]).lower() + " "
448
+ batch["target_text"] = re.sub('[û]', 'u', batch[text_column_name]).lower() + " "
449
+ batch["target_text"] = re.sub('!', '', batch[text_column_name]).lower() + " "
450
+ batch["target_text"] = re.sub('[û]', 'u', batch[text_column_name]).lower() + " "
451
+ batch["target_text"] = batch[text_column_name].replace('\"',"").replace("&","").replace("'","").replace("(","").lower() + " "
452
+ batch["target_text"] = batch[text_column_name].replace('[',"").replace("]","").replace("\\","").replace(")","").lower() + " "
453
+ return batch
454
+
455
+ with training_args.main_process_first(desc="dataset map special characters removal"):
456
+ raw_datasets = raw_datasets.map(
457
+ remove_special_characters,
458
+ remove_columns=[text_column_name],
459
+ desc="remove special characters from datasets",
460
+ )
461
+
462
+ # save special tokens for tokenizer
463
+ word_delimiter_token = data_args.word_delimiter_token
464
+ unk_token = data_args.unk_token
465
+ pad_token = data_args.pad_token
466
+
467
+ # 3. Next, let's load the config as we might need it to create
468
+ # the tokenizer
469
+ # load config
470
+ config = AutoConfig.from_pretrained(
471
+ model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
472
+ )
473
+
474
+ # 4. Next, if no tokenizer file is defined,
475
+ # we create the vocabulary of the model by extracting all unique characters from
476
+ # the training and evaluation datasets
477
+ # We need to make sure that only first rank saves vocabulary
478
+ # make sure all processes wait until vocab is created
479
+ tokenizer_name_or_path = model_args.tokenizer_name_or_path
480
+ tokenizer_kwargs = {}
481
+ if tokenizer_name_or_path is None:
482
+ # save vocab in training output dir
483
+ tokenizer_name_or_path = training_args.output_dir
484
+
485
+ vocab_file = os.path.join(tokenizer_name_or_path, "vocab.json")
486
+
487
+ with training_args.main_process_first():
488
+ if training_args.overwrite_output_dir and os.path.isfile(vocab_file):
489
+ os.remove(vocab_file)
490
+
491
+ with training_args.main_process_first(desc="dataset map vocabulary creation"):
492
+ if not os.path.isfile(vocab_file):
493
+ os.makedirs(tokenizer_name_or_path, exist_ok=True)
494
+ vocab_dict = create_vocabulary_from_data(
495
+ raw_datasets,
496
+ word_delimiter_token=word_delimiter_token,
497
+ unk_token=unk_token,
498
+ pad_token=pad_token,
499
+ )
500
+
501
+ # save vocab dict to be loaded into tokenizer
502
+ with open(vocab_file, "w") as file:
503
+ json.dump(vocab_dict, file)
504
+
505
+ # if tokenizer has just been created
506
+ # it is defined by `tokenizer_class` if present in config else by `model_type`
507
+ tokenizer_kwargs = {
508
+ "config": config if config.tokenizer_class is not None else None,
509
+ "tokenizer_type": config.model_type if config.tokenizer_class is None else None,
510
+ "unk_token": unk_token,
511
+ "pad_token": pad_token,
512
+ "word_delimiter_token": word_delimiter_token,
513
+ }
514
+
515
+ # 5. Now we can instantiate the feature extractor, tokenizer and model
516
+ # Note for distributed training, the .from_pretrained methods guarantee that only
517
+ # one local process can concurrently download model & vocab.
518
+
519
+ # load feature_extractor and tokenizer
520
+ tokenizer = AutoTokenizer.from_pretrained(
521
+ tokenizer_name_or_path,
522
+ use_auth_token=data_args.use_auth_token,
523
+ **tokenizer_kwargs,
524
+ )
525
+ feature_extractor = AutoFeatureExtractor.from_pretrained(
526
+ model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
527
+ )
528
+
529
+ # adapt config
530
+ config.update(
531
+ {
532
+ "feat_proj_dropout": model_args.feat_proj_dropout,
533
+ "attention_dropout": model_args.attention_dropout,
534
+ "hidden_dropout": model_args.hidden_dropout,
535
+ "final_dropout": model_args.final_dropout,
536
+ "mask_time_prob": model_args.mask_time_prob,
537
+ "mask_time_length": model_args.mask_time_length,
538
+ "mask_feature_prob": model_args.mask_feature_prob,
539
+ "mask_feature_length": model_args.mask_feature_length,
540
+ "gradient_checkpointing": training_args.gradient_checkpointing,
541
+ "layerdrop": model_args.layerdrop,
542
+ "ctc_loss_reduction": model_args.ctc_loss_reduction,
543
+ "pad_token_id": tokenizer.pad_token_id,
544
+ "vocab_size": len(tokenizer),
545
+ "activation_dropout": model_args.activation_dropout,
546
+ }
547
+ )
548
+
549
+ # create model
550
+ model = AutoModelForCTC.from_pretrained(
551
+ model_args.model_name_or_path,
552
+ cache_dir=model_args.cache_dir,
553
+ config=config,
554
+ use_auth_token=data_args.use_auth_token,
555
+ )
556
+
557
+ # freeze encoder
558
+ if model_args.freeze_feature_encoder:
559
+ model.freeze_feature_encoder()
560
+
561
+ # 6. Now we preprocess the datasets including loading the audio, resampling and normalization
562
+ # Thankfully, `datasets` takes care of automatically loading and resampling the audio,
563
+ # so that we just need to set the correct target sampling rate and normalize the input
564
+ # via the `feature_extractor`
565
+
566
+ # make sure that dataset decodes audio with correct sampling rate
567
+ dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate
568
+ if dataset_sampling_rate != feature_extractor.sampling_rate:
569
+ raw_datasets = raw_datasets.cast_column(
570
+ data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
571
+ )
572
+
573
+ # derive max & min input length for sample rate & max duration
574
+ max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
575
+ min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
576
+ audio_column_name = data_args.audio_column_name
577
+ num_workers = data_args.preprocessing_num_workers
578
+
579
+ # `phoneme_language` is only relevant if the model is fine-tuned on phoneme classification
580
+ phoneme_language = data_args.phoneme_language
581
+
582
+ # Preprocessing the datasets.
583
+ # We need to read the audio files as arrays and tokenize the targets.
584
+ def prepare_dataset(batch):
585
+ # load audio
586
+ sample = batch[audio_column_name]
587
+
588
+ inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
589
+ batch["input_values"] = inputs.input_values[0]
590
+ batch["input_length"] = len(batch["input_values"])
591
+
592
+ # encode targets
593
+ additional_kwargs = {}
594
+ if phoneme_language is not None:
595
+ additional_kwargs["phonemizer_lang"] = phoneme_language
596
+
597
+ batch["labels"] = tokenizer(batch["target_text"], **additional_kwargs).input_ids
598
+ return batch
599
+
600
+ with training_args.main_process_first(desc="dataset map preprocessing"):
601
+ vectorized_datasets = raw_datasets.map(
602
+ prepare_dataset,
603
+ remove_columns=next(iter(raw_datasets.values())).column_names,
604
+ num_proc=num_workers,
605
+ desc="preprocess datasets",
606
+ )
607
+
608
+ def is_audio_in_length_range(length):
609
+ return length > min_input_length and length < max_input_length
610
+
611
+ # filter data that is shorter than min_input_length
612
+ vectorized_datasets = vectorized_datasets.filter(
613
+ is_audio_in_length_range,
614
+ num_proc=num_workers,
615
+ input_columns=["input_length"],
616
+ )
617
+
618
+ # 7. Next, we can prepare the training.
619
+ # Let's use word error rate (WER) as our evaluation metric,
620
+ # instantiate a data collator and the trainer
621
+
622
+ # Define evaluation metrics during training, *i.e.* word error rate, character error rate
623
+ eval_metrics = {metric: load_metric(metric) for metric in data_args.eval_metrics}
624
+
625
+ # for large datasets it is advised to run the preprocessing on a
626
+ # single machine first with ``args.preprocessing_only`` since there will mostly likely
627
+ # be a timeout when running the script in distributed mode.
628
+ # In a second step ``args.preprocessing_only`` can then be set to `False` to load the
629
+ # cached dataset
630
+ if data_args.preprocessing_only:
631
+ logger.info(f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}")
632
+ return
633
+
634
+ def compute_metrics(pred):
635
+ pred_logits = pred.predictions
636
+ pred_ids = np.argmax(pred_logits, axis=-1)
637
+
638
+ pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
639
+
640
+ pred_str = tokenizer.batch_decode(pred_ids)
641
+ # we do not want to group tokens when computing the metrics
642
+ label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False)
643
+
644
+ metrics = {k: v.compute(predictions=pred_str, references=label_str) for k, v in eval_metrics.items()}
645
+
646
+ return metrics
647
+
648
+ # Now save everything to be able to create a single processor later
649
+ if is_main_process(training_args.local_rank):
650
+ # save feature extractor, tokenizer and config
651
+ feature_extractor.save_pretrained(training_args.output_dir)
652
+ tokenizer.save_pretrained(training_args.output_dir)
653
+ config.save_pretrained(training_args.output_dir)
654
+
655
+ try:
656
+ processor = AutoProcessor.from_pretrained(training_args.output_dir)
657
+ except (OSError, KeyError):
658
+ warnings.warn(
659
+ "Loading a processor from a feature extractor config that does not"
660
+ " include a `processor_class` attribute is deprecated and will be removed in v5. Please add the following "
661
+ " attribute to your `preprocessor_config.json` file to suppress this warning: "
662
+ " `'processor_class': 'Wav2Vec2Processor'`",
663
+ FutureWarning,
664
+ )
665
+ processor = Wav2Vec2Processor.from_pretrained(training_args.output_dir)
666
+
667
+ # Instantiate custom data collator
668
+ data_collator = DataCollatorCTCWithPadding(processor=processor)
669
+
670
+ # Initialize Trainer
671
+ trainer = Trainer(
672
+ model=model,
673
+ data_collator=data_collator,
674
+ args=training_args,
675
+ compute_metrics=compute_metrics,
676
+ train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
677
+ eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
678
+ tokenizer=feature_extractor,
679
+ )
680
+
681
+ # 8. Finally, we can start training
682
+
683
+ # Training
684
+ if training_args.do_train:
685
+
686
+ # use last checkpoint if exist
687
+ if last_checkpoint is not None:
688
+ checkpoint = last_checkpoint
689
+ elif os.path.isdir(model_args.model_name_or_path):
690
+ checkpoint = model_args.model_name_or_path
691
+ else:
692
+ checkpoint = None
693
+
694
+ train_result = trainer.train(resume_from_checkpoint=checkpoint)
695
+ trainer.save_model()
696
+
697
+ metrics = train_result.metrics
698
+ max_train_samples = (
699
+ data_args.max_train_samples
700
+ if data_args.max_train_samples is not None
701
+ else len(vectorized_datasets["train"])
702
+ )
703
+ metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"]))
704
+
705
+ trainer.log_metrics("train", metrics)
706
+ trainer.save_metrics("train", metrics)
707
+ trainer.save_state()
708
+
709
+ # Evaluation
710
+ results = {}
711
+ if training_args.do_eval:
712
+ logger.info("*** Evaluate ***")
713
+ metrics = trainer.evaluate()
714
+ max_eval_samples = (
715
+ data_args.max_eval_samples if data_args.max_eval_samples is not None else len(vectorized_datasets["eval"])
716
+ )
717
+ metrics["eval_samples"] = min(max_eval_samples, len(vectorized_datasets["eval"]))
718
+
719
+ trainer.log_metrics("eval", metrics)
720
+ trainer.save_metrics("eval", metrics)
721
+
722
+ # Write model card and (optionally) push to hub
723
+ config_name = data_args.dataset_config_name if data_args.dataset_config_name is not None else "na"
724
+ kwargs = {
725
+ "finetuned_from": model_args.model_name_or_path,
726
+ "tasks": "speech-recognition",
727
+ "tags": ["automatic-speech-recognition", data_args.dataset_name],
728
+ "dataset_args": f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split: {data_args.eval_split_name}",
729
+ "dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}",
730
+ }
731
+ if "common_voice" in data_args.dataset_name:
732
+ kwargs["language"] = config_name
733
+
734
+ if training_args.push_to_hub:
735
+ trainer.push_to_hub(**kwargs)
736
+ else:
737
+ trainer.create_model_card(**kwargs)
738
+
739
+ return results
740
+
741
+
742
+ if __name__ == "__main__":
743
+ main()
added_tokens.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"<s>": 39, "</s>": 40}
config.json ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "facebook/wav2vec2-xls-r-300m",
3
+ "activation_dropout": 0.0,
4
+ "adapter_kernel_size": 3,
5
+ "adapter_stride": 2,
6
+ "add_adapter": false,
7
+ "apply_spec_augment": true,
8
+ "architectures": [
9
+ "Wav2Vec2ForCTC"
10
+ ],
11
+ "attention_dropout": 0.0,
12
+ "bos_token_id": 1,
13
+ "classifier_proj_size": 256,
14
+ "codevector_dim": 768,
15
+ "contrastive_logits_temperature": 0.1,
16
+ "conv_bias": true,
17
+ "conv_dim": [
18
+ 512,
19
+ 512,
20
+ 512,
21
+ 512,
22
+ 512,
23
+ 512,
24
+ 512
25
+ ],
26
+ "conv_kernel": [
27
+ 10,
28
+ 3,
29
+ 3,
30
+ 3,
31
+ 3,
32
+ 2,
33
+ 2
34
+ ],
35
+ "conv_stride": [
36
+ 5,
37
+ 2,
38
+ 2,
39
+ 2,
40
+ 2,
41
+ 2,
42
+ 2
43
+ ],
44
+ "ctc_loss_reduction": "mean",
45
+ "ctc_zero_infinity": false,
46
+ "diversity_loss_weight": 0.1,
47
+ "do_stable_layer_norm": true,
48
+ "eos_token_id": 2,
49
+ "feat_extract_activation": "gelu",
50
+ "feat_extract_dropout": 0.0,
51
+ "feat_extract_norm": "layer",
52
+ "feat_proj_dropout": 0.0,
53
+ "feat_quantizer_dropout": 0.0,
54
+ "final_dropout": 0.0,
55
+ "hidden_act": "gelu",
56
+ "hidden_dropout": 0.0,
57
+ "hidden_size": 1024,
58
+ "initializer_range": 0.02,
59
+ "intermediate_size": 4096,
60
+ "layer_norm_eps": 1e-05,
61
+ "layerdrop": 0.0,
62
+ "mask_feature_length": 10,
63
+ "mask_feature_min_masks": 0,
64
+ "mask_feature_prob": 0.0,
65
+ "mask_time_length": 10,
66
+ "mask_time_min_masks": 2,
67
+ "mask_time_prob": 0.05,
68
+ "model_type": "wav2vec2",
69
+ "num_adapter_layers": 3,
70
+ "num_attention_heads": 16,
71
+ "num_codevector_groups": 2,
72
+ "num_codevectors_per_group": 320,
73
+ "num_conv_pos_embedding_groups": 16,
74
+ "num_conv_pos_embeddings": 128,
75
+ "num_feat_extract_layers": 7,
76
+ "num_hidden_layers": 24,
77
+ "num_negatives": 100,
78
+ "output_hidden_size": 1024,
79
+ "pad_token_id": 38,
80
+ "proj_codevector_dim": 768,
81
+ "tdnn_dilation": [
82
+ 1,
83
+ 2,
84
+ 3,
85
+ 1,
86
+ 1
87
+ ],
88
+ "tdnn_dim": [
89
+ 512,
90
+ 512,
91
+ 512,
92
+ 512,
93
+ 1500
94
+ ],
95
+ "tdnn_kernel": [
96
+ 5,
97
+ 3,
98
+ 3,
99
+ 1,
100
+ 1
101
+ ],
102
+ "torch_dtype": "float32",
103
+ "transformers_version": "4.17.0.dev0",
104
+ "use_weighted_layer_sum": false,
105
+ "vocab_size": 41,
106
+ "xvector_output_dim": 512
107
+ }
eval.py ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ from datasets import load_dataset, load_metric, Audio, Dataset
3
+ from transformers import pipeline, AutoFeatureExtractor
4
+ import re
5
+ import argparse
6
+ import unicodedata
7
+ from typing import Dict
8
+
9
+
10
+ def log_results(result: Dataset, args: Dict[str, str]):
11
+ """ DO NOT CHANGE. This function computes and logs the result metrics. """
12
+
13
+ log_outputs = args.log_outputs
14
+ dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split])
15
+
16
+ # load metric
17
+ wer = load_metric("wer")
18
+ cer = load_metric("cer")
19
+
20
+ # compute metrics
21
+ wer_result = wer.compute(references=result["target"], predictions=result["prediction"])
22
+ cer_result = cer.compute(references=result["target"], predictions=result["prediction"])
23
+
24
+ # print & log results
25
+ result_str = (
26
+ f"WER: {wer_result}\n"
27
+ f"CER: {cer_result}"
28
+ )
29
+ print(result_str)
30
+
31
+ with open(f"{dataset_id}_eval_results.txt", "w") as f:
32
+ f.write(result_str)
33
+
34
+ # log all results in text file. Possibly interesting for analysis
35
+ if log_outputs is not None:
36
+ pred_file = f"log_{dataset_id}_predictions.txt"
37
+ target_file = f"log_{dataset_id}_targets.txt"
38
+
39
+ with open(pred_file, "w") as p, open(target_file, "w") as t:
40
+
41
+ # mapping function to write output
42
+ def write_to_file(batch, i):
43
+ p.write(f"{i}" + "\n")
44
+ p.write(batch["prediction"] + "\n")
45
+ t.write(f"{i}" + "\n")
46
+ t.write(batch["target"] + "\n")
47
+
48
+ result.map(write_to_file, with_indices=True)
49
+
50
+
51
+ def normalize_text(text: str) -> str:
52
+ """ DO ADAPT FOR YOUR USE CASE. this function normalizes the target text. """
53
+
54
+ chars_to_ignore_regex = '[\é\!\,\,\?\.\!\-\;\:\"\“\%\‘\”\�\'\’\—\–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
55
+
56
+ text = text.lower()
57
+ # normalize non-standard (stylized) unicode characters
58
+ text = unicodedata.normalize('NFKC', text)
59
+ # remove punctuation
60
+ text = re.sub(chars_to_ignore_regex, "", text)
61
+
62
+ # Let's also make sure we split on all kinds of newlines, spaces, etc...
63
+ text = " ".join(text.split())
64
+
65
+ return text
66
+
67
+
68
+ def main(args):
69
+ # load dataset
70
+ dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True)
71
+
72
+ # for testing: only process the first two examples as a test
73
+ # dataset = dataset.select(range(10))
74
+
75
+ # load processor
76
+ feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id)
77
+ sampling_rate = feature_extractor.sampling_rate
78
+
79
+ # resample audio
80
+ dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate))
81
+
82
+ # load eval pipeline
83
+ asr = pipeline("automatic-speech-recognition", model=args.model_id)
84
+
85
+ # map function to decode audio
86
+ def map_to_pred(batch):
87
+ prediction = asr(batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s)
88
+
89
+ batch["prediction"] = prediction["text"]
90
+ batch["target"] = normalize_text(batch["sentence"])
91
+ return batch
92
+
93
+ # run inference on all examples
94
+ result = dataset.map(map_to_pred, remove_columns=dataset.column_names)
95
+
96
+ # compute and log_results
97
+ # do not change function below
98
+ log_results(result, args)
99
+
100
+
101
+ if __name__ == "__main__":
102
+ parser = argparse.ArgumentParser()
103
+
104
+ parser.add_argument(
105
+ "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
106
+ )
107
+ parser.add_argument(
108
+ "--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets"
109
+ )
110
+ parser.add_argument(
111
+ "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
112
+ )
113
+ parser.add_argument(
114
+ "--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`"
115
+ )
116
+ parser.add_argument(
117
+ "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to None. For long audio files a good value would be 5.0 seconds."
118
+ )
119
+ parser.add_argument(
120
+ "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to None. For long audio files a good value would be 1.0 seconds."
121
+ )
122
+ parser.add_argument(
123
+ "--log_outputs", action='store_true', help="If defined, write outputs to log file for analysis."
124
+ )
125
+ args = parser.parse_args()
126
+
127
+ main(args)
preprocessor_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "feature_extractor_type": "Wav2Vec2FeatureExtractor",
4
+ "feature_size": 1,
5
+ "padding_side": "right",
6
+ "padding_value": 0,
7
+ "return_attention_mask": true,
8
+ "sampling_rate": 16000
9
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e3dad1847894d0f3d034309e4bea4f145a17ed0fd7163aef065f0f96789381d
3
+ size 1262091761
run.sh ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ python run_speech_recognition_ctc.py \
2
+ --dataset_name="mozilla-foundation/common_voice_8_0" \
3
+ --model_name_or_path="facebook/wav2vec2-xls-r-300m" \
4
+ --dataset_config_name="id" \
5
+ --output_dir="./" \
6
+ --overwrite_output_dir \
7
+ --num_train_epochs="30" \
8
+ --per_device_train_batch_size="32" \
9
+ --gradient_accumulation_steps="2" \
10
+ --learning_rate="3e-4" \
11
+ --warmup_steps="500" \
12
+ --evaluation_strategy="steps" \
13
+ --text_column_name="sentence" \
14
+ --length_column_name="input_length" \
15
+ --save_steps="400" \
16
+ --eval_steps="100" \
17
+ --layerdrop="0.0" \
18
+ --save_total_limit="2" \
19
+ --freeze_feature_encoder \
20
+ --gradient_checkpointing \
21
+ --fp16 \
22
+ --group_by_length \
23
+ --push_to_hub \
24
+ --do_train --do_eval
run_eval.sh ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ python eval.py \
2
+ --dataset="mozilla-foundation/common_voice_8_0" \
3
+ --model_id="ayameRushia/wav2vec2-large-xls-r-300m-id" \
4
+ --config="id" \
5
+ --split="test"
run_speech_recognition_ctc.py ADDED
@@ -0,0 +1,743 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding=utf-8
3
+ # Copyright 2021 The HuggingFace Inc. team. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+
16
+ """ Fine-tuning a 🤗 Transformers CTC model for automatic speech recognition"""
17
+
18
+ import functools
19
+ import json
20
+ import logging
21
+ import os
22
+ import re
23
+ import sys
24
+ import warnings
25
+ from dataclasses import dataclass, field
26
+ from typing import Dict, List, Optional, Union
27
+
28
+ import datasets
29
+ import numpy as np
30
+ import torch
31
+ from datasets import DatasetDict, load_dataset, load_metric
32
+
33
+ import transformers
34
+ from transformers import (
35
+ AutoConfig,
36
+ AutoFeatureExtractor,
37
+ AutoModelForCTC,
38
+ AutoProcessor,
39
+ AutoTokenizer,
40
+ HfArgumentParser,
41
+ Trainer,
42
+ TrainingArguments,
43
+ Wav2Vec2Processor,
44
+ set_seed,
45
+ )
46
+ from transformers.trainer_utils import get_last_checkpoint, is_main_process
47
+ from transformers.utils import check_min_version
48
+ from transformers.utils.versions import require_version
49
+
50
+
51
+ # Will error if the minimal version of Transformers is not installed. Remove at your own risks.
52
+ check_min_version("4.17.0.dev0")
53
+
54
+ require_version("datasets>=1.13.3", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
55
+
56
+
57
+ logger = logging.getLogger(__name__)
58
+
59
+
60
+ def list_field(default=None, metadata=None):
61
+ return field(default_factory=lambda: default, metadata=metadata)
62
+
63
+
64
+ @dataclass
65
+ class ModelArguments:
66
+ """
67
+ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
68
+ """
69
+
70
+ model_name_or_path: str = field(
71
+ metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
72
+ )
73
+ tokenizer_name_or_path: Optional[str] = field(
74
+ default=None,
75
+ metadata={"help": "Path to pretrained tokenizer or tokenizer identifier from huggingface.co/models"},
76
+ )
77
+ cache_dir: Optional[str] = field(
78
+ default=None,
79
+ metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
80
+ )
81
+ freeze_feature_encoder: bool = field(
82
+ default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."}
83
+ )
84
+ attention_dropout: float = field(
85
+ default=0.0, metadata={"help": "The dropout ratio for the attention probabilities."}
86
+ )
87
+ activation_dropout: float = field(
88
+ default=0.0, metadata={"help": "The dropout ratio for activations inside the fully connected layer."}
89
+ )
90
+ feat_proj_dropout: float = field(default=0.0, metadata={"help": "The dropout ratio for the projected features."})
91
+ hidden_dropout: float = field(
92
+ default=0.0,
93
+ metadata={
94
+ "help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
95
+ },
96
+ )
97
+ final_dropout: float = field(
98
+ default=0.0,
99
+ metadata={"help": "The dropout probability for the final projection layer."},
100
+ )
101
+ mask_time_prob: float = field(
102
+ default=0.05,
103
+ metadata={
104
+ "help": "Probability of each feature vector along the time axis to be chosen as the start of the vector"
105
+ "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature"
106
+ "vectors will be masked along the time axis."
107
+ },
108
+ )
109
+ mask_time_length: int = field(
110
+ default=10,
111
+ metadata={"help": "Length of vector span to mask along the time axis."},
112
+ )
113
+ mask_feature_prob: float = field(
114
+ default=0.0,
115
+ metadata={
116
+ "help": "Probability of each feature vector along the feature axis to be chosen as the start of the vector"
117
+ "span to be masked. Approximately ``mask_feature_prob * sequence_length // mask_feature_length`` feature bins will be masked along the time axis."
118
+ },
119
+ )
120
+ mask_feature_length: int = field(
121
+ default=10,
122
+ metadata={"help": "Length of vector span to mask along the feature axis."},
123
+ )
124
+ layerdrop: float = field(default=0.0, metadata={"help": "The LayerDrop probability."})
125
+ ctc_loss_reduction: Optional[str] = field(
126
+ default="mean", metadata={"help": "The way the ctc loss should be reduced. Should be one of 'mean' or 'sum'."}
127
+ )
128
+
129
+
130
+ @dataclass
131
+ class DataTrainingArguments:
132
+ """
133
+ Arguments pertaining to what data we are going to input our model for training and eval.
134
+
135
+ Using `HfArgumentParser` we can turn this class
136
+ into argparse arguments to be able to specify them on
137
+ the command line.
138
+ """
139
+
140
+ dataset_name: str = field(
141
+ metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
142
+ )
143
+ dataset_config_name: str = field(
144
+ default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
145
+ )
146
+ train_split_name: str = field(
147
+ default="train+validation",
148
+ metadata={
149
+ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
150
+ },
151
+ )
152
+ eval_split_name: str = field(
153
+ default="test",
154
+ metadata={
155
+ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'test'"
156
+ },
157
+ )
158
+ audio_column_name: str = field(
159
+ default="audio",
160
+ metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
161
+ )
162
+ text_column_name: str = field(
163
+ default="text",
164
+ metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"},
165
+ )
166
+ overwrite_cache: bool = field(
167
+ default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
168
+ )
169
+ preprocessing_num_workers: Optional[int] = field(
170
+ default=None,
171
+ metadata={"help": "The number of processes to use for the preprocessing."},
172
+ )
173
+ max_train_samples: Optional[int] = field(
174
+ default=None,
175
+ metadata={
176
+ "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
177
+ "value if set."
178
+ },
179
+ )
180
+ max_eval_samples: Optional[int] = field(
181
+ default=None,
182
+ metadata={
183
+ "help": "For debugging purposes or quicker training, truncate the number of validation examples to this "
184
+ "value if set."
185
+ },
186
+ )
187
+ chars_to_ignore: Optional[List[str]] = list_field(
188
+ default=None,
189
+ metadata={"help": "A list of characters to remove from the transcripts."},
190
+ )
191
+ eval_metrics: List[str] = list_field(
192
+ default=["wer"],
193
+ metadata={"help": "A list of metrics the model should be evaluated on. E.g. `'wer cer'`"},
194
+ )
195
+ max_duration_in_seconds: float = field(
196
+ default=20.0,
197
+ metadata={
198
+ "help": "Filter audio files that are longer than `max_duration_in_seconds` seconds to 'max_duration_in_seconds`"
199
+ },
200
+ )
201
+ min_duration_in_seconds: float = field(
202
+ default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
203
+ )
204
+ preprocessing_only: bool = field(
205
+ default=False,
206
+ metadata={
207
+ "help": "Whether to only do data preprocessing and skip training. "
208
+ "This is especially useful when data preprocessing errors out in distributed training due to timeout. "
209
+ "In this case, one should run the preprocessing in a non-distributed setup with `preprocessing_only=True` "
210
+ "so that the cached datasets can consequently be loaded in distributed training"
211
+ },
212
+ )
213
+ use_auth_token: bool = field(
214
+ default=False,
215
+ metadata={
216
+ "help": "If :obj:`True`, will use the token generated when running"
217
+ ":obj:`transformers-cli login` as HTTP bearer authorization for remote files."
218
+ },
219
+ )
220
+ unk_token: str = field(
221
+ default="[UNK]",
222
+ metadata={"help": "The unk token for the tokenizer"},
223
+ )
224
+ pad_token: str = field(
225
+ default="[PAD]",
226
+ metadata={"help": "The padding token for the tokenizer"},
227
+ )
228
+ word_delimiter_token: str = field(
229
+ default="|",
230
+ metadata={"help": "The word delimiter token for the tokenizer"},
231
+ )
232
+ phoneme_language: Optional[str] = field(
233
+ default=None,
234
+ metadata={
235
+ "help": "The target language that should be used be"
236
+ " passed to the tokenizer for tokenization. Note that"
237
+ " this is only relevant if the model classifies the"
238
+ " input audio to a sequence of phoneme sequences."
239
+ },
240
+ )
241
+
242
+
243
+ @dataclass
244
+ class DataCollatorCTCWithPadding:
245
+ """
246
+ Data collator that will dynamically pad the inputs received.
247
+ Args:
248
+ processor (:class:`~transformers.AutoProcessor`)
249
+ The processor used for proccessing the data.
250
+ padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
251
+ Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
252
+ among:
253
+ * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
254
+ sequence if provided).
255
+ * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
256
+ maximum acceptable input length for the model if that argument is not provided.
257
+ * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
258
+ different lengths).
259
+ max_length (:obj:`int`, `optional`):
260
+ Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
261
+ max_length_labels (:obj:`int`, `optional`):
262
+ Maximum length of the ``labels`` returned list and optionally padding length (see above).
263
+ pad_to_multiple_of (:obj:`int`, `optional`):
264
+ If set will pad the sequence to a multiple of the provided value.
265
+ This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
266
+ 7.5 (Volta).
267
+ """
268
+
269
+ processor: AutoProcessor
270
+ padding: Union[bool, str] = "longest"
271
+ pad_to_multiple_of: Optional[int] = None
272
+ pad_to_multiple_of_labels: Optional[int] = None
273
+
274
+ def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
275
+ # split inputs and labels since they have to be of different lenghts and need
276
+ # different padding methods
277
+ input_features = [{"input_values": feature["input_values"]} for feature in features]
278
+ label_features = [{"input_ids": feature["labels"]} for feature in features]
279
+
280
+ batch = self.processor.pad(
281
+ input_features,
282
+ padding=self.padding,
283
+ pad_to_multiple_of=self.pad_to_multiple_of,
284
+ return_tensors="pt",
285
+ )
286
+
287
+ with self.processor.as_target_processor():
288
+ labels_batch = self.processor.pad(
289
+ label_features,
290
+ padding=self.padding,
291
+ pad_to_multiple_of=self.pad_to_multiple_of_labels,
292
+ return_tensors="pt",
293
+ )
294
+
295
+ # replace padding with -100 to ignore loss correctly
296
+ labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
297
+
298
+ batch["labels"] = labels
299
+
300
+ return batch
301
+
302
+
303
+ def create_vocabulary_from_data(
304
+ datasets: DatasetDict,
305
+ word_delimiter_token: Optional[str] = None,
306
+ unk_token: Optional[str] = None,
307
+ pad_token: Optional[str] = None,
308
+ ):
309
+ # Given training and test labels create vocabulary
310
+ def extract_all_chars(batch):
311
+ all_text = " ".join(batch["target_text"])
312
+ vocab = list(set(all_text))
313
+ return {"vocab": [vocab], "all_text": [all_text]}
314
+
315
+ vocabs = datasets.map(
316
+ extract_all_chars,
317
+ batched=True,
318
+ batch_size=-1,
319
+ keep_in_memory=True,
320
+ remove_columns=datasets["train"].column_names,
321
+ )
322
+
323
+ # take union of all unique characters in each dataset
324
+ vocab_set = functools.reduce(
325
+ lambda vocab_1, vocab_2: set(vocab_1["vocab"][0]) | set(vocab_2["vocab"][0]), vocabs.values()
326
+ )
327
+
328
+ vocab_dict = {v: k for k, v in enumerate(sorted(list(vocab_set)))}
329
+
330
+ # replace white space with delimiter token
331
+ if word_delimiter_token is not None:
332
+ vocab_dict[word_delimiter_token] = vocab_dict[" "]
333
+ del vocab_dict[" "]
334
+
335
+ # add unk and pad token
336
+ if unk_token is not None:
337
+ vocab_dict[unk_token] = len(vocab_dict)
338
+
339
+ if pad_token is not None:
340
+ vocab_dict[pad_token] = len(vocab_dict)
341
+
342
+ return vocab_dict
343
+
344
+
345
+ def main():
346
+ # See all possible arguments in src/transformers/training_args.py
347
+ # or by passing the --help flag to this script.
348
+ # We now keep distinct sets of args, for a cleaner separation of concerns.
349
+
350
+ parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
351
+ if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
352
+ # If we pass only one argument to the script and it's the path to a json file,
353
+ # let's parse it to get our arguments.
354
+ model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
355
+ else:
356
+ model_args, data_args, training_args = parser.parse_args_into_dataclasses()
357
+
358
+ # Detecting last checkpoint.
359
+ last_checkpoint = None
360
+ if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
361
+ last_checkpoint = get_last_checkpoint(training_args.output_dir)
362
+ if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
363
+ raise ValueError(
364
+ f"Output directory ({training_args.output_dir}) already exists and is not empty. "
365
+ "Use --overwrite_output_dir to overcome."
366
+ )
367
+ elif last_checkpoint is not None:
368
+ logger.info(
369
+ f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
370
+ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
371
+ )
372
+
373
+ # Setup logging
374
+ logging.basicConfig(
375
+ format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
376
+ datefmt="%m/%d/%Y %H:%M:%S",
377
+ handlers=[logging.StreamHandler(sys.stdout)],
378
+ )
379
+ logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
380
+
381
+ # Log on each process the small summary:
382
+ logger.warning(
383
+ f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
384
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
385
+ )
386
+ # Set the verbosity to info of the Transformers logger (on main process only):
387
+ if is_main_process(training_args.local_rank):
388
+ transformers.utils.logging.set_verbosity_info()
389
+ logger.info("Training/evaluation parameters %s", training_args)
390
+
391
+ # Set seed before initializing model.
392
+ set_seed(training_args.seed)
393
+
394
+ # 1. First, let's load the dataset
395
+ raw_datasets = DatasetDict()
396
+
397
+ if training_args.do_train:
398
+ raw_datasets["train"] = load_dataset(
399
+ data_args.dataset_name,
400
+ data_args.dataset_config_name,
401
+ split=data_args.train_split_name,
402
+ use_auth_token=data_args.use_auth_token,
403
+ )
404
+
405
+ if data_args.audio_column_name not in raw_datasets["train"].column_names:
406
+ raise ValueError(
407
+ f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
408
+ "Make sure to set `--audio_column_name` to the correct audio column - one of "
409
+ f"{', '.join(raw_datasets['train'].column_names)}."
410
+ )
411
+
412
+ if data_args.text_column_name not in raw_datasets["train"].column_names:
413
+ raise ValueError(
414
+ f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
415
+ "Make sure to set `--text_column_name` to the correct text column - one of "
416
+ f"{', '.join(raw_datasets['train'].column_names)}."
417
+ )
418
+
419
+ if data_args.max_train_samples is not None:
420
+ raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))
421
+
422
+ if training_args.do_eval:
423
+ raw_datasets["eval"] = load_dataset(
424
+ data_args.dataset_name,
425
+ data_args.dataset_config_name,
426
+ split=data_args.eval_split_name,
427
+ use_auth_token=data_args.use_auth_token,
428
+ )
429
+
430
+ if data_args.max_eval_samples is not None:
431
+ raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples))
432
+
433
+ # 2. We remove some special characters from the datasets
434
+ # that make training complicated and do not help in transcribing the speech
435
+ # E.g. characters, such as `,` and `.` do not really have an acoustic characteristic
436
+ # that could be easily picked up by the model
437
+ chars_to_ignore_regex = '[\é\!\,\,\?\.\!\-\;\:\"\“\%\‘\”\�\'\’\—\–]'
438
+ text_column_name = data_args.text_column_name
439
+
440
+ def remove_special_characters(batch):
441
+ if chars_to_ignore_regex is not None:
442
+ batch["target_text"] = re.sub(chars_to_ignore_regex, "", batch[text_column_name]).lower() + " "
443
+ else:
444
+ batch["target_text"] = batch[text_column_name].lower() + " "
445
+ batch["target_text"] = re.sub('[â]', 'a', batch[text_column_name]).lower() + " "
446
+ batch["target_text"] = re.sub('[î]', 'i', batch[text_column_name]).lower() + " "
447
+ batch["target_text"] = re.sub('[ô]', 'o', batch[text_column_name]).lower() + " "
448
+ batch["target_text"] = re.sub('[û]', 'u', batch[text_column_name]).lower() + " "
449
+ batch["target_text"] = re.sub('!', '', batch[text_column_name]).lower() + " "
450
+ batch["target_text"] = re.sub('[û]', 'u', batch[text_column_name]).lower() + " "
451
+ batch["target_text"] = batch[text_column_name].replace('\"',"").replace("&","").replace("'","").replace("(","").lower() + " "
452
+ batch["target_text"] = batch[text_column_name].replace('[',"").replace("]","").replace("\\","").replace(")","").lower() + " "
453
+ return batch
454
+
455
+ with training_args.main_process_first(desc="dataset map special characters removal"):
456
+ raw_datasets = raw_datasets.map(
457
+ remove_special_characters,
458
+ remove_columns=[text_column_name],
459
+ desc="remove special characters from datasets",
460
+ )
461
+
462
+ # save special tokens for tokenizer
463
+ word_delimiter_token = data_args.word_delimiter_token
464
+ unk_token = data_args.unk_token
465
+ pad_token = data_args.pad_token
466
+
467
+ # 3. Next, let's load the config as we might need it to create
468
+ # the tokenizer
469
+ # load config
470
+ config = AutoConfig.from_pretrained(
471
+ model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
472
+ )
473
+
474
+ # 4. Next, if no tokenizer file is defined,
475
+ # we create the vocabulary of the model by extracting all unique characters from
476
+ # the training and evaluation datasets
477
+ # We need to make sure that only first rank saves vocabulary
478
+ # make sure all processes wait until vocab is created
479
+ tokenizer_name_or_path = model_args.tokenizer_name_or_path
480
+ tokenizer_kwargs = {}
481
+ if tokenizer_name_or_path is None:
482
+ # save vocab in training output dir
483
+ tokenizer_name_or_path = training_args.output_dir
484
+
485
+ vocab_file = os.path.join(tokenizer_name_or_path, "vocab.json")
486
+
487
+ with training_args.main_process_first():
488
+ if training_args.overwrite_output_dir and os.path.isfile(vocab_file):
489
+ os.remove(vocab_file)
490
+
491
+ with training_args.main_process_first(desc="dataset map vocabulary creation"):
492
+ if not os.path.isfile(vocab_file):
493
+ os.makedirs(tokenizer_name_or_path, exist_ok=True)
494
+ vocab_dict = create_vocabulary_from_data(
495
+ raw_datasets,
496
+ word_delimiter_token=word_delimiter_token,
497
+ unk_token=unk_token,
498
+ pad_token=pad_token,
499
+ )
500
+
501
+ # save vocab dict to be loaded into tokenizer
502
+ with open(vocab_file, "w") as file:
503
+ json.dump(vocab_dict, file)
504
+
505
+ # if tokenizer has just been created
506
+ # it is defined by `tokenizer_class` if present in config else by `model_type`
507
+ tokenizer_kwargs = {
508
+ "config": config if config.tokenizer_class is not None else None,
509
+ "tokenizer_type": config.model_type if config.tokenizer_class is None else None,
510
+ "unk_token": unk_token,
511
+ "pad_token": pad_token,
512
+ "word_delimiter_token": word_delimiter_token,
513
+ }
514
+
515
+ # 5. Now we can instantiate the feature extractor, tokenizer and model
516
+ # Note for distributed training, the .from_pretrained methods guarantee that only
517
+ # one local process can concurrently download model & vocab.
518
+
519
+ # load feature_extractor and tokenizer
520
+ tokenizer = AutoTokenizer.from_pretrained(
521
+ tokenizer_name_or_path,
522
+ use_auth_token=data_args.use_auth_token,
523
+ **tokenizer_kwargs,
524
+ )
525
+ feature_extractor = AutoFeatureExtractor.from_pretrained(
526
+ model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
527
+ )
528
+
529
+ # adapt config
530
+ config.update(
531
+ {
532
+ "feat_proj_dropout": model_args.feat_proj_dropout,
533
+ "attention_dropout": model_args.attention_dropout,
534
+ "hidden_dropout": model_args.hidden_dropout,
535
+ "final_dropout": model_args.final_dropout,
536
+ "mask_time_prob": model_args.mask_time_prob,
537
+ "mask_time_length": model_args.mask_time_length,
538
+ "mask_feature_prob": model_args.mask_feature_prob,
539
+ "mask_feature_length": model_args.mask_feature_length,
540
+ "gradient_checkpointing": training_args.gradient_checkpointing,
541
+ "layerdrop": model_args.layerdrop,
542
+ "ctc_loss_reduction": model_args.ctc_loss_reduction,
543
+ "pad_token_id": tokenizer.pad_token_id,
544
+ "vocab_size": len(tokenizer),
545
+ "activation_dropout": model_args.activation_dropout,
546
+ }
547
+ )
548
+
549
+ # create model
550
+ model = AutoModelForCTC.from_pretrained(
551
+ model_args.model_name_or_path,
552
+ cache_dir=model_args.cache_dir,
553
+ config=config,
554
+ use_auth_token=data_args.use_auth_token,
555
+ )
556
+
557
+ # freeze encoder
558
+ if model_args.freeze_feature_encoder:
559
+ model.freeze_feature_encoder()
560
+
561
+ # 6. Now we preprocess the datasets including loading the audio, resampling and normalization
562
+ # Thankfully, `datasets` takes care of automatically loading and resampling the audio,
563
+ # so that we just need to set the correct target sampling rate and normalize the input
564
+ # via the `feature_extractor`
565
+
566
+ # make sure that dataset decodes audio with correct sampling rate
567
+ dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate
568
+ if dataset_sampling_rate != feature_extractor.sampling_rate:
569
+ raw_datasets = raw_datasets.cast_column(
570
+ data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
571
+ )
572
+
573
+ # derive max & min input length for sample rate & max duration
574
+ max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
575
+ min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
576
+ audio_column_name = data_args.audio_column_name
577
+ num_workers = data_args.preprocessing_num_workers
578
+
579
+ # `phoneme_language` is only relevant if the model is fine-tuned on phoneme classification
580
+ phoneme_language = data_args.phoneme_language
581
+
582
+ # Preprocessing the datasets.
583
+ # We need to read the audio files as arrays and tokenize the targets.
584
+ def prepare_dataset(batch):
585
+ # load audio
586
+ sample = batch[audio_column_name]
587
+
588
+ inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
589
+ batch["input_values"] = inputs.input_values[0]
590
+ batch["input_length"] = len(batch["input_values"])
591
+
592
+ # encode targets
593
+ additional_kwargs = {}
594
+ if phoneme_language is not None:
595
+ additional_kwargs["phonemizer_lang"] = phoneme_language
596
+
597
+ batch["labels"] = tokenizer(batch["target_text"], **additional_kwargs).input_ids
598
+ return batch
599
+
600
+ with training_args.main_process_first(desc="dataset map preprocessing"):
601
+ vectorized_datasets = raw_datasets.map(
602
+ prepare_dataset,
603
+ remove_columns=next(iter(raw_datasets.values())).column_names,
604
+ num_proc=num_workers,
605
+ desc="preprocess datasets",
606
+ )
607
+
608
+ def is_audio_in_length_range(length):
609
+ return length > min_input_length and length < max_input_length
610
+
611
+ # filter data that is shorter than min_input_length
612
+ vectorized_datasets = vectorized_datasets.filter(
613
+ is_audio_in_length_range,
614
+ num_proc=num_workers,
615
+ input_columns=["input_length"],
616
+ )
617
+
618
+ # 7. Next, we can prepare the training.
619
+ # Let's use word error rate (WER) as our evaluation metric,
620
+ # instantiate a data collator and the trainer
621
+
622
+ # Define evaluation metrics during training, *i.e.* word error rate, character error rate
623
+ eval_metrics = {metric: load_metric(metric) for metric in data_args.eval_metrics}
624
+
625
+ # for large datasets it is advised to run the preprocessing on a
626
+ # single machine first with ``args.preprocessing_only`` since there will mostly likely
627
+ # be a timeout when running the script in distributed mode.
628
+ # In a second step ``args.preprocessing_only`` can then be set to `False` to load the
629
+ # cached dataset
630
+ if data_args.preprocessing_only:
631
+ logger.info(f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}")
632
+ return
633
+
634
+ def compute_metrics(pred):
635
+ pred_logits = pred.predictions
636
+ pred_ids = np.argmax(pred_logits, axis=-1)
637
+
638
+ pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
639
+
640
+ pred_str = tokenizer.batch_decode(pred_ids)
641
+ # we do not want to group tokens when computing the metrics
642
+ label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False)
643
+
644
+ metrics = {k: v.compute(predictions=pred_str, references=label_str) for k, v in eval_metrics.items()}
645
+
646
+ return metrics
647
+
648
+ # Now save everything to be able to create a single processor later
649
+ if is_main_process(training_args.local_rank):
650
+ # save feature extractor, tokenizer and config
651
+ feature_extractor.save_pretrained(training_args.output_dir)
652
+ tokenizer.save_pretrained(training_args.output_dir)
653
+ config.save_pretrained(training_args.output_dir)
654
+
655
+ try:
656
+ processor = AutoProcessor.from_pretrained(training_args.output_dir)
657
+ except (OSError, KeyError):
658
+ warnings.warn(
659
+ "Loading a processor from a feature extractor config that does not"
660
+ " include a `processor_class` attribute is deprecated and will be removed in v5. Please add the following "
661
+ " attribute to your `preprocessor_config.json` file to suppress this warning: "
662
+ " `'processor_class': 'Wav2Vec2Processor'`",
663
+ FutureWarning,
664
+ )
665
+ processor = Wav2Vec2Processor.from_pretrained(training_args.output_dir)
666
+
667
+ # Instantiate custom data collator
668
+ data_collator = DataCollatorCTCWithPadding(processor=processor)
669
+
670
+ # Initialize Trainer
671
+ trainer = Trainer(
672
+ model=model,
673
+ data_collator=data_collator,
674
+ args=training_args,
675
+ compute_metrics=compute_metrics,
676
+ train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
677
+ eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
678
+ tokenizer=feature_extractor,
679
+ )
680
+
681
+ # 8. Finally, we can start training
682
+
683
+ # Training
684
+ if training_args.do_train:
685
+
686
+ # use last checkpoint if exist
687
+ if last_checkpoint is not None:
688
+ checkpoint = last_checkpoint
689
+ elif os.path.isdir(model_args.model_name_or_path):
690
+ checkpoint = model_args.model_name_or_path
691
+ else:
692
+ checkpoint = None
693
+
694
+ train_result = trainer.train(resume_from_checkpoint=checkpoint)
695
+ trainer.save_model()
696
+
697
+ metrics = train_result.metrics
698
+ max_train_samples = (
699
+ data_args.max_train_samples
700
+ if data_args.max_train_samples is not None
701
+ else len(vectorized_datasets["train"])
702
+ )
703
+ metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"]))
704
+
705
+ trainer.log_metrics("train", metrics)
706
+ trainer.save_metrics("train", metrics)
707
+ trainer.save_state()
708
+
709
+ # Evaluation
710
+ results = {}
711
+ if training_args.do_eval:
712
+ logger.info("*** Evaluate ***")
713
+ metrics = trainer.evaluate()
714
+ max_eval_samples = (
715
+ data_args.max_eval_samples if data_args.max_eval_samples is not None else len(vectorized_datasets["eval"])
716
+ )
717
+ metrics["eval_samples"] = min(max_eval_samples, len(vectorized_datasets["eval"]))
718
+
719
+ trainer.log_metrics("eval", metrics)
720
+ trainer.save_metrics("eval", metrics)
721
+
722
+ # Write model card and (optionally) push to hub
723
+ config_name = data_args.dataset_config_name if data_args.dataset_config_name is not None else "na"
724
+ kwargs = {
725
+ "finetuned_from": model_args.model_name_or_path,
726
+ "tasks": "speech-recognition",
727
+ "tags": ["automatic-speech-recognition", data_args.dataset_name],
728
+ "dataset_args": f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split: {data_args.eval_split_name}",
729
+ "dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}",
730
+ }
731
+ if "common_voice" in data_args.dataset_name:
732
+ kwargs["language"] = config_name
733
+
734
+ if training_args.push_to_hub:
735
+ trainer.push_to_hub(**kwargs)
736
+ else:
737
+ trainer.create_model_card(**kwargs)
738
+
739
+ return results
740
+
741
+
742
+ if __name__ == "__main__":
743
+ main()
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "[UNK]", "pad_token": "[PAD]", "additional_special_tokens": [{"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}]}
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "[PAD]", "do_lower_case": false, "word_delimiter_token": "|", "special_tokens_map_file": null, "tokenizer_file": null, "name_or_path": "./", "tokenizer_class": "Wav2Vec2CTCTokenizer"}
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:477ddfccd2e86b3483f2a97e330f28ccca5f0e4f45701a5a487847eed2e42bc3
3
+ size 2991
vocab.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"&": 1, "(": 2, ")": 3, "[": 4, "\\": 5, "a": 6, "b": 7, "c": 8, "d": 9, "e": 10, "f": 11, "g": 12, "h": 13, "i": 14, "j": 15, "k": 16, "l": 17, "m": 18, "n": 19, "o": 20, "p": 21, "q": 22, "r": 23, "s": 24, "t": 25, "u": 26, "v": 27, "w": 28, "x": 29, "y": 30, "z": 31, "á": 32, "é": 33, "ł": 34, "ń": 35, "ō": 36, "|": 0, "[UNK]": 37, "[PAD]": 38}
wandb/debug-internal.log ADDED
@@ -0,0 +1 @@
 
 
1
+ run-20220130_033240-1ciqu2rb/logs/debug-internal.log
wandb/debug.log ADDED
@@ -0,0 +1 @@
 
 
1
+ run-20220130_033240-1ciqu2rb/logs/debug.log
wandb/latest-run ADDED
@@ -0,0 +1 @@
 
 
1
+ run-20220130_033240-1ciqu2rb
wandb/run-20220130_033240-1ciqu2rb/files/conda-environment.yaml ADDED
File without changes
wandb/run-20220130_033240-1ciqu2rb/files/config.yaml ADDED
The diff for this file is too large to render. See raw diff
 
wandb/run-20220130_033240-1ciqu2rb/files/output.log ADDED
@@ -0,0 +1,766 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+
4
+
5
+
6
+
7
+
8
+
9
+
10
+
11
+
12
+
13
+
14
+
15
+
16
+
17
+
18
+
19
+
20
+
21
+
22
+
23
+
24
+
25
+
26
+
27
+
28
+
29
+
30
+
31
+
32
+
33
+
34
+
35
+
36
+
37
+
38
+
39
+
40
+
41
+
42
+
43
+
44
+
45
+
46
+
47
+
48
+
49
+
50
+
51
+
52
+
53
+
54
+
55
+
56
+
57
+
58
+
59
+
60
+
61
+
62
+
63
+
64
+
65
+
66
+
67
+
68
+
69
+
70
+
71
+
72
+
73
+
74
+
75
+
76
+
77
+
78
+
79
+
80
+
81
+
82
+
83
+
84
+
85
+
86
+
87
+
88
+
89
+
90
+
91
+
92
+
93
+
94
+
95
+
96
+
97
+
98
+
99
+
100
+
101
+ 3%|██▉ | 100/3870 [06:41<5:12:51, 4.98s/it]The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.
102
+ ***** Running Evaluation *****
103
+ Num examples = 3608
104
+ Batch size = 8
105
+
106
+
107
+
108
+
109
+
110
+
111
+
112
+
113
+
114
+
115
+
116
+
117
+
118
+
119
+
120
+
121
+
122
+
123
+
124
+
125
+
126
+
127
+
128
+
129
+
130
+
131
+
132
+
133
+
134
+
135
+
136
+
137
+
138
+
139
+
140
+
141
+
142
+
143
+
144
+
145
+
146
+
147
+
148
+
149
+
150
+
151
+
152
+
153
+
154
+
155
+
156
+
157
+
158
+
159
+
160
+
161
+
162
+
163
+
164
+
165
+
166
+
167
+
168
+
169
+
170
+
171
+
172
+
173
+
174
+
175
+
176
+
177
+
178
+
179
+
180
+
181
+
182
+
183
+
184
+
185
+
186
+
187
+
188
+
189
+
190
+
191
+
192
+ 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 451/451 [02:55<00:00, 2.46it/s]
193
+
194
+
195
+
196
+
197
+
198
+
199
+
200
+
201
+
202
+
203
+
204
+
205
+
206
+
207
+
208
+
209
+
210
+
211
+
212
+
213
+
214
+
215
+
216
+
217
+
218
+
219
+
220
+
221
+
222
+
223
+
224
+
225
+
226
+
227
+
228
+
229
+
230
+
231
+
232
+
233
+
234
+
235
+
236
+
237
+
238
+
239
+
240
+
241
+
242
+
243
+
244
+
245
+
246
+
247
+
248
+
249
+
250
+
251
+
252
+
253
+
254
+
255
+
256
+
257
+
258
+
259
+
260
+
261
+
262
+
263
+
264
+
265
+
266
+
267
+
268
+
269
+
270
+
271
+
272
+
273
+
274
+
275
+
276
+
277
+
278
+
279
+
280
+
281
+
282
+
283
+
284
+
285
+
286
+
287
+
288
+
289
+
290
+
291
+
292
+ 5%|█████▉ | 200/3870 [16:10<4:58:46, 4.88s/it]The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.
293
+ ***** Running Evaluation *****
294
+ Num examples = 3608
295
+ Batch size = 8
296
+
297
+
298
+
299
+
300
+
301
+
302
+
303
+
304
+
305
+
306
+
307
+
308
+
309
+
310
+
311
+
312
+
313
+
314
+
315
+
316
+
317
+
318
+
319
+
320
+
321
+
322
+
323
+
324
+
325
+
326
+
327
+
328
+
329
+
330
+
331
+
332
+
333
+
334
+
335
+
336
+
337
+
338
+
339
+
340
+
341
+
342
+
343
+
344
+
345
+
346
+
347
+
348
+
349
+
350
+
351
+
352
+
353
+
354
+
355
+
356
+
357
+
358
+
359
+
360
+
361
+
362
+
363
+
364
+
365
+
366
+
367
+
368
+
369
+
370
+
371
+
372
+
373
+
374
+
375
+
376
+
377
+
378
+
379
+
380
+
381
+ 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 451/451 [02:54<00:00, 2.13it/s]
382
+
383
+
384
+
385
+
386
+
387
+
388
+
389
+
390
+
391
+
392
+
393
+
394
+
395
+
396
+
397
+
398
+
399
+
400
+
401
+
402
+
403
+
404
+
405
+
406
+
407
+
408
+
409
+
410
+
411
+
412
+
413
+
414
+
415
+
416
+
417
+
418
+
419
+
420
+
421
+
422
+
423
+
424
+
425
+
426
+
427
+
428
+
429
+
430
+
431
+
432
+
433
+
434
+
435
+
436
+
437
+
438
+
439
+
440
+
441
+
442
+
443
+
444
+
445
+
446
+
447
+
448
+
449
+
450
+
451
+
452
+
453
+
454
+
455
+
456
+
457
+
458
+
459
+
460
+
461
+
462
+
463
+
464
+
465
+
466
+
467
+
468
+
469
+
470
+
471
+
472
+
473
+
474
+
475
+
476
+
477
+
478
+
479
+
480
+
481
+
482
+ 8%|████████▉ | 300/3870 [25:34<4:22:52, 4.42s/it]The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.
483
+ ***** Running Evaluation *****
484
+ Num examples = 3608
485
+ Batch size = 8
486
+
487
+
488
+
489
+
490
+
491
+
492
+
493
+
494
+
495
+
496
+
497
+
498
+
499
+
500
+
501
+
502
+
503
+
504
+
505
+
506
+
507
+
508
+
509
+
510
+
511
+
512
+
513
+
514
+
515
+
516
+
517
+
518
+
519
+
520
+
521
+
522
+
523
+
524
+
525
+
526
+
527
+
528
+
529
+
530
+
531
+
532
+
533
+
534
+
535
+
536
+
537
+
538
+
539
+
540
+
541
+
542
+
543
+
544
+
545
+
546
+
547
+
548
+
549
+
550
+
551
+
552
+
553
+
554
+
555
+
556
+
557
+
558
+
559
+
560
+
561
+
562
+
563
+
564
+
565
+
566
+
567
+
568
+
569
+
570
+ 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 451/451 [02:50<00:00, 2.51it/s]
571
+
572
+
573
+
574
+
575
+
576
+
577
+
578
+
579
+
580
+
581
+
582
+
583
+
584
+
585
+
586
+
587
+
588
+
589
+
590
+
591
+
592
+
593
+
594
+
595
+
596
+
597
+
598
+
599
+
600
+
601
+
602
+
603
+
604
+
605
+
606
+
607
+
608
+
609
+
610
+
611
+
612
+
613
+
614
+
615
+
616
+
617
+
618
+
619
+
620
+
621
+
622
+
623
+
624
+
625
+
626
+
627
+
628
+
629
+
630
+
631
+
632
+
633
+
634
+
635
+
636
+
637
+
638
+
639
+
640
+
641
+
642
+
643
+
644
+
645
+
646
+
647
+
648
+
649
+
650
+
651
+
652
+
653
+
654
+
655
+
656
+
657
+
658
+
659
+
660
+
661
+
662
+
663
+
664
+
665
+
666
+
667
+
668
+
669
+
670
+
671
+ 10%|███████████▉ | 400/3870 [34:51<4:12:05, 4.36s/it]The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.
672
+ ***** Running Evaluation *****
673
+ Num examples = 3608
674
+ Batch size = 8
675
+
676
+
677
+
678
+
679
+
680
+
681
+
682
+
683
+
684
+
685
+
686
+
687
+
688
+
689
+
690
+
691
+
692
+
693
+
694
+
695
+
696
+
697
+
698
+
699
+
700
+
701
+
702
+
703
+
704
+
705
+
706
+
707
+
708
+
709
+
710
+
711
+
712
+
713
+
714
+
715
+
716
+
717
+
718
+
719
+
720
+
721
+
722
+
723
+
724
+
725
+
726
+
727
+
728
+
729
+
730
+
731
+
732
+
733
+
734
+
735
+
736
+
737
+
738
+
739
+
740
+
741
+
742
+
743
+
744
+
745
+
746
+
747
+
748
+
749
+
750
+
751
+
752
+
753
+
754
+
755
+
756
+
757
+
758
+
759
+
760
+
761
+
762
+ 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 451/451 [02:57<00:00, 2.50it/s]
763
+
764
+ Configuration saved in ./checkpoint-400/config.json
765
+ Model weights saved in ./checkpoint-400/pytorch_model.bin
766
+ Configuration saved in ./checkpoint-400/preprocessor_config.json
wandb/run-20220130_033240-1ciqu2rb/files/requirements.txt ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ -ransformers==4.16.0.dev0
2
+ aiohttp==3.8.1
3
+ aiosignal==1.2.0
4
+ analytics-python==1.4.0
5
+ appdirs==1.4.4
6
+ argon2-cffi==20.1.0
7
+ async-generator==1.10
8
+ async-timeout==4.0.2
9
+ attrs==21.1.0
10
+ audioread==2.1.9
11
+ backcall==0.2.0
12
+ backoff==1.10.0
13
+ bcrypt==3.2.0
14
+ beautifulsoup4==4.9.3
15
+ bleach==3.3.0
16
+ brotlipy==0.7.0
17
+ certifi==2020.12.5
18
+ cffi==1.14.3
19
+ chardet==3.0.4
20
+ charset-normalizer==2.0.10
21
+ click==8.0.3
22
+ conda-build==3.21.4
23
+ conda-package-handling==1.7.2
24
+ conda==4.9.2
25
+ configparser==5.2.0
26
+ cryptography==3.2.1
27
+ cycler==0.11.0
28
+ datasets==1.17.1.dev0
29
+ decorator==4.4.2
30
+ defusedxml==0.7.1
31
+ dill==0.3.4
32
+ dnspython==2.1.0
33
+ docker-pycreds==0.4.0
34
+ entrypoints==0.3
35
+ ffmpy==0.3.0
36
+ filelock==3.0.12
37
+ flask-cachebuster==1.0.0
38
+ flask-cors==3.0.10
39
+ flask-login==0.5.0
40
+ flask==2.0.2
41
+ fonttools==4.28.5
42
+ frozenlist==1.3.0
43
+ fsspec==2022.1.0
44
+ gitdb==4.0.9
45
+ gitpython==3.1.26
46
+ glob2==0.7
47
+ gradio==2.7.0
48
+ huggingface-hub==0.4.0
49
+ idna==2.10
50
+ ipykernel==5.5.4
51
+ ipython-genutils==0.2.0
52
+ ipython==7.21.0
53
+ ipywidgets==7.6.3
54
+ itsdangerous==2.0.1
55
+ jedi==0.17.0
56
+ jinja2==3.0.3
57
+ jiwer==2.3.0
58
+ joblib==1.1.0
59
+ json5==0.9.5
60
+ jsonschema==3.2.0
61
+ jupyter-client==6.1.12
62
+ jupyter-core==4.7.1
63
+ jupyterlab-pygments==0.1.2
64
+ jupyterlab-server==1.2.0
65
+ jupyterlab-widgets==1.0.0
66
+ jupyterlab==2.2.9
67
+ kiwisolver==1.3.2
68
+ libarchive-c==2.9
69
+ librosa==0.8.1
70
+ llvmlite==0.38.0
71
+ markdown2==2.4.2
72
+ markupsafe==2.0.1
73
+ matplotlib==3.5.1
74
+ mistune==0.8.4
75
+ mkl-fft==1.3.0
76
+ mkl-random==1.1.1
77
+ mkl-service==2.3.0
78
+ monotonic==1.6
79
+ multidict==5.2.0
80
+ multiprocess==0.70.12.2
81
+ nano==0.10.0
82
+ nbclient==0.5.3
83
+ nbconvert==6.0.7
84
+ nbformat==5.1.3
85
+ nest-asyncio==1.5.1
86
+ notebook==6.3.0
87
+ numba==0.55.0
88
+ numpy==1.19.2
89
+ olefile==0.46
90
+ packaging==20.9
91
+ pandas==1.3.5
92
+ pandocfilters==1.4.3
93
+ paramiko==2.9.2
94
+ parso==0.8.1
95
+ pathtools==0.1.2
96
+ pexpect==4.8.0
97
+ pickleshare==0.7.5
98
+ pillow==8.1.2
99
+ pip==21.3.1
100
+ pkginfo==1.7.0
101
+ pooch==1.5.2
102
+ prometheus-client==0.10.1
103
+ promise==2.3
104
+ prompt-toolkit==3.0.8
105
+ protobuf==3.19.3
106
+ psutil==5.8.0
107
+ ptyprocess==0.7.0
108
+ pyarrow==6.0.1
109
+ pycosat==0.6.3
110
+ pycparser==2.20
111
+ pycryptodome==3.12.0
112
+ pydub==0.25.1
113
+ pygments==2.8.0
114
+ pynacl==1.5.0
115
+ pyopenssl==19.1.0
116
+ pyparsing==2.4.7
117
+ pyrsistent==0.17.3
118
+ pysocks==1.7.1
119
+ python-dateutil==2.8.1
120
+ python-etcd==0.4.5
121
+ python-levenshtein==0.12.2
122
+ pytz==2021.1
123
+ pyyaml==5.4.1
124
+ pyzmq==22.0.3
125
+ regex==2022.1.18
126
+ requests==2.24.0
127
+ resampy==0.2.2
128
+ ruamel-yaml==0.15.87
129
+ sacremoses==0.0.47
130
+ scikit-learn==1.0.2
131
+ scipy==1.7.3
132
+ send2trash==1.5.0
133
+ sentry-sdk==1.5.4
134
+ setuptools==50.3.1.post20201107
135
+ shortuuid==1.0.8
136
+ six==1.15.0
137
+ smmap==5.0.0
138
+ soundfile==0.10.3.post1
139
+ soupsieve==2.2
140
+ subprocess32==3.5.4
141
+ termcolor==1.1.0
142
+ terminado==0.9.4
143
+ testpath==0.4.4
144
+ threadpoolctl==3.0.0
145
+ tokenizers==0.11.4
146
+ torch==1.10.1
147
+ torchaudio==0.10.1
148
+ torchelastic==0.2.2
149
+ torchtext==0.9.1
150
+ torchvision==0.9.1
151
+ tornado==6.1
152
+ tqdm==4.62.3
153
+ traitlets==5.0.5
154
+ transformers==4.17.0.dev0
155
+ typing-extensions==3.7.4.3
156
+ urllib3==1.25.11
157
+ wandb==0.12.9
158
+ wcwidth==0.2.5
159
+ webencodings==0.5.1
160
+ werkzeug==2.0.2
161
+ wheel==0.35.1
162
+ widgetsnbextension==3.5.1
163
+ xxhash==2.0.2
164
+ yarl==1.7.2
165
+ yaspin==2.1.0
wandb/run-20220130_033240-1ciqu2rb/files/wandb-metadata.json ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "os": "Linux-5.11.0-37-generic-x86_64-with-glibc2.10",
3
+ "python": "3.8.8",
4
+ "heartbeatAt": "2022-01-30T03:32:42.575532",
5
+ "startedAt": "2022-01-30T03:32:40.976292",
6
+ "docker": null,
7
+ "gpu": "Tesla V100S-PCIE-32GB",
8
+ "gpu_count": 1,
9
+ "cpu_count": 60,
10
+ "cuda": null,
11
+ "args": [
12
+ "--dataset_name=mozilla-foundation/common_voice_8_0",
13
+ "--model_name_or_path=facebook/wav2vec2-xls-r-300m",
14
+ "--dataset_config_name=id",
15
+ "--output_dir=./",
16
+ "--overwrite_output_dir",
17
+ "--num_train_epochs=30",
18
+ "--per_device_train_batch_size=32",
19
+ "--gradient_accumulation_steps=2",
20
+ "--learning_rate=3e-4",
21
+ "--warmup_steps=500",
22
+ "--evaluation_strategy=steps",
23
+ "--text_column_name=sentence",
24
+ "--length_column_name=input_length",
25
+ "--save_steps=400",
26
+ "--eval_steps=100",
27
+ "--layerdrop=0.0",
28
+ "--save_total_limit=2",
29
+ "--freeze_feature_encoder",
30
+ "--gradient_checkpointing",
31
+ "--fp16",
32
+ "--group_by_length",
33
+ "--push_to_hub",
34
+ "--do_train",
35
+ "--do_eval"
36
+ ],
37
+ "state": "running",
38
+ "program": "run_speech_recognition_ctc.py",
39
+ "codePath": "run_speech_recognition_ctc.py",
40
+ "git": {
41
+ "remote": "https://huggingface.co/ayameRushia/wav2vec2-large-xls-r-300m-id",
42
+ "commit": "e9a072972b065f0428e09c053847c48cf66a0c70"
43
+ },
44
+ "email": "[email protected]",
45
+ "root": "/workspace/wav2vec2-large-xls-r-300m-id",
46
+ "host": "job-1c325595-1ca8-441f-8e94-43b2937c71d2",
47
+ "username": "ovh",
48
+ "executable": "/opt/conda/bin/python"
49
+ }
wandb/run-20220130_033240-1ciqu2rb/files/wandb-summary.json ADDED
The diff for this file is too large to render. See raw diff
 
wandb/run-20220130_033240-1ciqu2rb/logs/debug-internal.log ADDED
The diff for this file is too large to render. See raw diff
 
wandb/run-20220130_033240-1ciqu2rb/logs/debug.log ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2022-01-30 03:32:40,980 INFO MainThread:1398290 [wandb_setup.py:_flush():71] setting env: {'project': 'wav2vec2 sprint', 'run_name': '300m id'}
2
+ 2022-01-30 03:32:40,981 INFO MainThread:1398290 [wandb_setup.py:_flush():71] setting login settings: {}
3
+ 2022-01-30 03:32:40,981 INFO MainThread:1398290 [wandb_init.py:_log_setup():371] Logging user logs to /workspace/wav2vec2-large-xls-r-300m-id/wandb/run-20220130_033240-1ciqu2rb/logs/debug.log
4
+ 2022-01-30 03:32:40,981 INFO MainThread:1398290 [wandb_init.py:_log_setup():372] Logging internal logs to /workspace/wav2vec2-large-xls-r-300m-id/wandb/run-20220130_033240-1ciqu2rb/logs/debug-internal.log
5
+ 2022-01-30 03:32:40,981 INFO MainThread:1398290 [wandb_init.py:init():404] calling init triggers
6
+ 2022-01-30 03:32:40,982 INFO MainThread:1398290 [wandb_init.py:init():409] wandb.init called with sweep_config: {}
7
+ config: {}
8
+ 2022-01-30 03:32:40,982 INFO MainThread:1398290 [wandb_init.py:init():460] starting backend
9
+ 2022-01-30 03:32:40,982 INFO MainThread:1398290 [backend.py:_multiprocessing_setup():99] multiprocessing start_methods=fork,spawn,forkserver, using: spawn
10
+ 2022-01-30 03:32:41,044 INFO MainThread:1398290 [backend.py:ensure_launched():216] starting backend process...
11
+ 2022-01-30 03:32:41,098 INFO MainThread:1398290 [backend.py:ensure_launched():221] started backend process with pid: 1399178
12
+ 2022-01-30 03:32:41,101 INFO MainThread:1398290 [wandb_init.py:init():469] backend started and connected
13
+ 2022-01-30 03:32:41,111 INFO MainThread:1398290 [wandb_init.py:init():533] updated telemetry
14
+ 2022-01-30 03:32:41,238 INFO MainThread:1398290 [wandb_init.py:init():563] communicating current version
15
+ 2022-01-30 03:32:42,083 INFO MainThread:1398290 [wandb_init.py:init():568] got version response
16
+ 2022-01-30 03:32:42,084 INFO MainThread:1398290 [wandb_init.py:init():578] communicating run to backend with 30 second timeout
17
+ 2022-01-30 03:32:42,564 INFO MainThread:1398290 [wandb_init.py:init():606] starting run threads in backend
18
+ 2022-01-30 03:32:43,129 INFO MainThread:1398290 [wandb_run.py:_console_start():1810] atexit reg
19
+ 2022-01-30 03:32:43,129 INFO MainThread:1398290 [wandb_run.py:_redirect():1684] redirect: SettingsConsole.REDIRECT
20
+ 2022-01-30 03:32:43,130 INFO MainThread:1398290 [wandb_run.py:_redirect():1689] Redirecting console.
21
+ 2022-01-30 03:32:43,134 INFO MainThread:1398290 [wandb_run.py:_redirect():1745] Redirects installed.
22
+ 2022-01-30 03:32:43,134 INFO MainThread:1398290 [wandb_init.py:init():633] run started, returning control to user process
23
+ 2022-01-30 03:32:43,137 INFO MainThread:1398290 [wandb_run.py:_config_callback():956] config_cb None None {'return_dict': True, 'output_hidden_states': False, 'output_attentions': False, 'torchscript': False, 'torch_dtype': 'float32', 'use_bfloat16': False, 'pruned_heads': {}, 'tie_word_embeddings': True, 'is_encoder_decoder': False, 'is_decoder': False, 'cross_attention_hidden_size': None, 'add_cross_attention': False, 'tie_encoder_decoder': False, 'max_length': 20, 'min_length': 0, 'do_sample': False, 'early_stopping': False, 'num_beams': 1, 'num_beam_groups': 1, 'diversity_penalty': 0.0, 'temperature': 1.0, 'top_k': 50, 'top_p': 1.0, 'repetition_penalty': 1.0, 'length_penalty': 1.0, 'no_repeat_ngram_size': 0, 'encoder_no_repeat_ngram_size': 0, 'bad_words_ids': None, 'num_return_sequences': 1, 'chunk_size_feed_forward': 0, 'output_scores': False, 'return_dict_in_generate': False, 'forced_bos_token_id': None, 'forced_eos_token_id': None, 'remove_invalid_values': False, 'architectures': ['Wav2Vec2ForPreTraining'], 'finetuning_task': None, 'id2label': {0: 'LABEL_0', 1: 'LABEL_1'}, 'label2id': {'LABEL_0': 0, 'LABEL_1': 1}, 'tokenizer_class': None, 'prefix': None, 'bos_token_id': 1, 'pad_token_id': 38, 'eos_token_id': 2, 'sep_token_id': None, 'decoder_start_token_id': None, 'task_specific_params': None, 'problem_type': None, '_name_or_path': 'facebook/wav2vec2-xls-r-300m', 'transformers_version': '4.17.0.dev0', 'feat_extract_dropout': 0.0, 'model_type': 'wav2vec2', 'num_feat_extract_layers': 7, 'hidden_size': 1024, 'feat_extract_norm': 'layer', 'feat_extract_activation': 'gelu', 'conv_dim': [512, 512, 512, 512, 512, 512, 512], 'conv_stride': [5, 2, 2, 2, 2, 2, 2], 'conv_kernel': [10, 3, 3, 3, 3, 2, 2], 'conv_bias': True, 'num_conv_pos_embeddings': 128, 'num_conv_pos_embedding_groups': 16, 'num_hidden_layers': 24, 'intermediate_size': 4096, 'hidden_act': 'gelu', 'num_attention_heads': 16, 'hidden_dropout': 0.0, 'attention_dropout': 0.0, 'activation_dropout': 0.0, 'feat_proj_dropout': 0.0, 'final_dropout': 0.0, 'layerdrop': 0.0, 'layer_norm_eps': 1e-05, 'initializer_range': 0.02, 'vocab_size': 41, 'do_stable_layer_norm': True, 'use_weighted_layer_sum': False, 'apply_spec_augment': True, 'mask_time_prob': 0.05, 'mask_time_length': 10, 'mask_time_min_masks': 2, 'mask_feature_prob': 0.0, 'mask_feature_length': 10, 'mask_feature_min_masks': 0, 'num_codevectors_per_group': 320, 'num_codevector_groups': 2, 'contrastive_logits_temperature': 0.1, 'feat_quantizer_dropout': 0.0, 'num_negatives': 100, 'codevector_dim': 768, 'proj_codevector_dim': 768, 'diversity_loss_weight': 0.1, 'ctc_loss_reduction': 'mean', 'ctc_zero_infinity': False, 'add_adapter': False, 'adapter_kernel_size': 3, 'adapter_stride': 2, 'num_adapter_layers': 3, 'output_hidden_size': 1024, 'classifier_proj_size': 256, 'tdnn_dim': [512, 512, 512, 512, 1500], 'tdnn_kernel': [5, 3, 3, 1, 1], 'tdnn_dilation': [1, 2, 3, 1, 1], 'xvector_output_dim': 512, 'output_dir': './', 'overwrite_output_dir': True, 'do_train': True, 'do_eval': True, 'do_predict': False, 'evaluation_strategy': 'steps', 'prediction_loss_only': False, 'per_device_train_batch_size': 32, 'per_device_eval_batch_size': 8, 'per_gpu_train_batch_size': 'None', 'per_gpu_eval_batch_size': 'None', 'gradient_accumulation_steps': 2, 'eval_accumulation_steps': 'None', 'learning_rate': 0.0003, 'weight_decay': 0.0, 'adam_beta1': 0.9, 'adam_beta2': 0.999, 'adam_epsilon': 1e-08, 'max_grad_norm': 1.0, 'num_train_epochs': 30.0, 'max_steps': -1, 'lr_scheduler_type': 'linear', 'warmup_ratio': 0.0, 'warmup_steps': 500, 'log_level': -1, 'log_level_replica': -1, 'log_on_each_node': True, 'logging_dir': './runs/Jan30_03-30-36_job-1c325595-1ca8-441f-8e94-43b2937c71d2', 'logging_strategy': 'steps', 'logging_first_step': False, 'logging_steps': 500, 'logging_nan_inf_filter': True, 'save_strategy': 'steps', 'save_steps': 400, 'save_total_limit': 2, 'save_on_each_node': False, 'no_cuda': False, 'seed': 42, 'bf16': False, 'fp16': True, 'fp16_opt_level': 'O1', 'half_precision_backend': 'amp', 'bf16_full_eval': False, 'fp16_full_eval': False, 'tf32': 'None', 'local_rank': -1, 'xpu_backend': 'None', 'tpu_num_cores': 'None', 'tpu_metrics_debug': False, 'debug': '[]', 'dataloader_drop_last': False, 'eval_steps': 100, 'dataloader_num_workers': 0, 'past_index': -1, 'run_name': './', 'disable_tqdm': False, 'remove_unused_columns': True, 'label_names': 'None', 'load_best_model_at_end': False, 'metric_for_best_model': 'None', 'greater_is_better': 'None', 'ignore_data_skip': False, 'sharded_ddp': '[]', 'deepspeed': 'None', 'label_smoothing_factor': 0.0, 'optim': 'adamw_hf', 'adafactor': False, 'group_by_length': True, 'length_column_name': 'input_length', 'report_to': "['wandb']", 'ddp_find_unused_parameters': 'None', 'ddp_bucket_cap_mb': 'None', 'dataloader_pin_memory': True, 'skip_memory_metrics': True, 'use_legacy_prediction_loop': False, 'push_to_hub': True, 'resume_from_checkpoint': 'None', 'hub_model_id': 'None', 'hub_strategy': 'every_save', 'hub_token': '<HUB_TOKEN>', 'gradient_checkpointing': True, 'fp16_backend': 'auto', 'push_to_hub_model_id': 'None', 'push_to_hub_organization': 'None', 'push_to_hub_token': '<PUSH_TO_HUB_TOKEN>', '_n_gpu': 1, 'mp_parameters': '', 'train_batch_size': 32, 'eval_batch_size': 8}
24
+ 2022-01-30 03:32:43,141 INFO MainThread:1398290 [wandb_watch.py:watch():43] Watching
wandb/run-20220130_033240-1ciqu2rb/run-1ciqu2rb.wandb ADDED
Binary file (941 kB). View file