ayameRushia commited on
Commit
21430e1
1 Parent(s): ba461e4

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +82 -0
README.md ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - indonlu
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: roberta-base-indonesian-sentiment-analysis-smsa
11
+ results:
12
+ - task:
13
+ name: Text Classification
14
+ type: text-classification
15
+ dataset:
16
+ name: indonlu
17
+ type: indonlu
18
+ args: smsa
19
+ metrics:
20
+ - name: Accuracy
21
+ type: accuracy
22
+ value: 0.9349206349206349
23
+ ---
24
+
25
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
26
+ should probably proofread and complete it, then remove this comment. -->
27
+
28
+ # roberta-base-indonesian-sentiment-analysis-smsa
29
+
30
+ This model is a fine-tuned version of [flax-community/indonesian-roberta-base](https://huggingface.co/flax-community/indonesian-roberta-base) on the indonlu dataset.
31
+ It achieves the following results on the evaluation set:
32
+ - Loss: 0.4252
33
+ - Accuracy: 0.9349
34
+
35
+ ## Model description
36
+
37
+ More information needed
38
+
39
+ ## Intended uses & limitations
40
+
41
+ More information needed
42
+
43
+ ## Training and evaluation data
44
+
45
+ More information needed
46
+
47
+ ## Training procedure
48
+
49
+ ### Training hyperparameters
50
+
51
+ The following hyperparameters were used during training:
52
+ - learning_rate: 1e-05
53
+ - train_batch_size: 16
54
+ - eval_batch_size: 16
55
+ - seed: 42
56
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
57
+ - lr_scheduler_type: linear
58
+ - lr_scheduler_warmup_steps: 2000
59
+ - num_epochs: 10
60
+
61
+ ### Training results
62
+
63
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
64
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
65
+ | 0.7582 | 1.0 | 688 | 0.3280 | 0.8786 |
66
+ | 0.3225 | 2.0 | 1376 | 0.2398 | 0.9206 |
67
+ | 0.2057 | 3.0 | 2064 | 0.2574 | 0.9230 |
68
+ | 0.1642 | 4.0 | 2752 | 0.2820 | 0.9302 |
69
+ | 0.1266 | 5.0 | 3440 | 0.3344 | 0.9317 |
70
+ | 0.0608 | 6.0 | 4128 | 0.3543 | 0.9341 |
71
+ | 0.058 | 7.0 | 4816 | 0.4252 | 0.9349 |
72
+ | 0.0315 | 8.0 | 5504 | 0.4736 | 0.9310 |
73
+ | 0.0166 | 9.0 | 6192 | 0.4649 | 0.9349 |
74
+ | 0.0143 | 10.0 | 6880 | 0.4648 | 0.9341 |
75
+
76
+
77
+ ### Framework versions
78
+
79
+ - Transformers 4.14.1
80
+ - Pytorch 1.10.0+cu111
81
+ - Datasets 1.16.1
82
+ - Tokenizers 0.10.3