philschmid HF staff commited on
Commit
631d39a
1 Parent(s): ac01879

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +25 -200
README.md CHANGED
@@ -180,75 +180,25 @@ should probably proofread and complete it, then remove this comment. -->
180
 
181
  <img src="https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha/resolve/main/thumbnail.png" alt="Zephyr Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
182
 
 
183
 
184
- # Model Card for Zephyr 7B β
 
185
 
186
- Zephyr is a series of language models that are trained to act as helpful assistants. Zephyr-7B-β is the second model in the series, and is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) that was trained on on a mix of publicly available, synthetic datasets using [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290). We found that removing the in-built alignment of these datasets boosted performance on [MT Bench](https://huggingface.co/spaces/lmsys/mt-bench) and made the model more helpful. However, this means that model is likely to generate problematic text when prompted to do so. You can find more details in the [technical report](https://arxiv.org/abs/2310.16944).
187
 
 
188
 
189
- ## Model description
190
 
191
- - **Model type:** A 7B parameter GPT-like model fine-tuned on a mix of publicly available, synthetic datasets.
192
- - **Language(s) (NLP):** Primarily English
193
- - **License:** MIT
194
- - **Finetuned from model:** [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
195
 
196
- ### Model Sources
197
-
198
- <!-- Provide the basic links for the model. -->
199
-
200
- - **Repository:** https://github.com/huggingface/alignment-handbook
201
- - **Demo:** https://huggingface.co/spaces/HuggingFaceH4/zephyr-chat
202
- - **Chatbot Arena:** Evaluate Zephyr 7B against 10+ LLMs in the LMSYS arena: http://arena.lmsys.org
203
-
204
- ## Performance
205
-
206
- At the time of release, Zephyr-7B-β is the highest ranked 7B chat model on the [MT-Bench](https://huggingface.co/spaces/lmsys/mt-bench) and [AlpacaEval](https://tatsu-lab.github.io/alpaca_eval/) benchmarks:
207
-
208
- | Model | Size | Alignment | MT-Bench (score) | AlpacaEval (win rate %) |
209
- |-------------|-----|----|---------------|--------------|
210
- | StableLM-Tuned-α | 7B| dSFT |2.75| -|
211
- | MPT-Chat | 7B |dSFT |5.42| -|
212
- | Xwin-LMv0.1 | 7B| dPPO| 6.19| 87.83|
213
- | Mistral-Instructv0.1 | 7B| - | 6.84 |-|
214
- | Zephyr-7b-α |7B| dDPO| 6.88| -|
215
- | **Zephyr-7b-β** 🪁 | **7B** | **dDPO** | **7.34** | **90.60** |
216
- | Falcon-Instruct | 40B |dSFT |5.17 |45.71|
217
- | Guanaco | 65B | SFT |6.41| 71.80|
218
- | Llama2-Chat | 70B |RLHF |6.86| 92.66|
219
- | Vicuna v1.3 | 33B |dSFT |7.12 |88.99|
220
- | WizardLM v1.0 | 70B |dSFT |7.71 |-|
221
- | Xwin-LM v0.1 | 70B |dPPO |- |95.57|
222
- | GPT-3.5-turbo | - |RLHF |7.94 |89.37|
223
- | Claude 2 | - |RLHF |8.06| 91.36|
224
- | GPT-4 | -| RLHF |8.99| 95.28|
225
-
226
- In particular, on several categories of MT-Bench, Zephyr-7B-β has strong performance compared to larger open models like Llama2-Chat-70B:
227
-
228
- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6200d0a443eb0913fa2df7cc/raxvt5ma16d7T23my34WC.png)
229
-
230
- However, on more complex tasks like coding and mathematics, Zephyr-7B-β lags behind proprietary models and more research is needed to close the gap.
231
-
232
-
233
- ## Intended uses & limitations
234
-
235
- The model was initially fine-tuned on a filtered and preprocessed of the [`UltraChat`](https://huggingface.co/datasets/stingning/ultrachat) dataset, which contains a diverse range of synthetic dialogues generated by ChatGPT.
236
- We then further aligned the model with [🤗 TRL's](https://github.com/huggingface/trl) `DPOTrainer` on the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset, which contains 64k prompts and model completions that are ranked by GPT-4. As a result, the model can be used for chat and you can check out our [demo](https://huggingface.co/spaces/HuggingFaceH4/zephyr-chat) to test its capabilities.
237
-
238
- You can find the datasets used for training Zephyr-7B-β [here](https://huggingface.co/collections/HuggingFaceH4/zephyr-7b-6538c6d6d5ddd1cbb1744a66)
239
-
240
- Here's how you can run the model using the `pipeline()` function from 🤗 Transformers:
241
 
242
  ```python
243
- # Install transformers from source - only needed for versions <= v4.34
244
- # pip install git+https://github.com/huggingface/transformers.git
245
- # pip install accelerate
246
-
247
- import torch
248
- from transformers import pipeline
249
-
250
- pipe = pipeline("text-generation", model="HuggingFaceH4/zephyr-7b-beta", torch_dtype=torch.bfloat16, device_map="auto")
251
 
 
252
  # We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
253
  messages = [
254
  {
@@ -260,151 +210,26 @@ messages = [
260
  prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
261
  outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
262
  print(outputs[0]["generated_text"])
263
- # <|system|>
264
- # You are a friendly chatbot who always responds in the style of a pirate.</s>
265
- # <|user|>
266
- # How many helicopters can a human eat in one sitting?</s>
267
- # <|assistant|>
268
- # Ah, me hearty matey! But yer question be a puzzler! A human cannot eat a helicopter in one sitting, as helicopters are not edible. They be made of metal, plastic, and other materials, not food!
269
  ```
270
 
271
- ## Bias, Risks, and Limitations
272
-
273
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
274
-
275
- Zephyr-7B-β has not been aligned to human preferences for safety within the RLHF phase or deployed with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so).
276
- It is also unknown what the size and composition of the corpus was used to train the base model (`mistralai/Mistral-7B-v0.1`), however it is likely to have included a mix of Web data and technical sources like books and code. See the [Falcon 180B model card](https://huggingface.co/tiiuae/falcon-180B#training-data) for an example of this.
277
 
 
278
 
279
- ## Training and evaluation data
280
 
281
- During DPO training, this model achieves the following results on the evaluation set:
282
-
283
- - Loss: 0.7496
284
- - Rewards/chosen: -4.5221
285
- - Rewards/rejected: -8.3184
286
- - Rewards/accuracies: 0.7812
287
- - Rewards/margins: 3.7963
288
- - Logps/rejected: -340.1541
289
- - Logps/chosen: -299.4561
290
- - Logits/rejected: -2.3081
291
- - Logits/chosen: -2.3531
292
-
293
-
294
- ### Training hyperparameters
295
-
296
- The following hyperparameters were used during training:
297
- - learning_rate: 5e-07
298
- - train_batch_size: 2
299
- - eval_batch_size: 4
300
- - seed: 42
301
- - distributed_type: multi-GPU
302
- - num_devices: 16
303
- - total_train_batch_size: 32
304
- - total_eval_batch_size: 64
305
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
306
- - lr_scheduler_type: linear
307
- - lr_scheduler_warmup_ratio: 0.1
308
- - num_epochs: 3.0
309
-
310
- ### Training results
311
-
312
- The table below shows the full set of DPO training metrics:
313
-
314
-
315
- | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
316
- |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
317
- | 0.6284 | 0.05 | 100 | 0.6098 | 0.0425 | -0.1872 | 0.7344 | 0.2297 | -258.8416 | -253.8099 | -2.7976 | -2.8234 |
318
- | 0.4908 | 0.1 | 200 | 0.5426 | -0.0279 | -0.6842 | 0.75 | 0.6563 | -263.8124 | -254.5145 | -2.7719 | -2.7960 |
319
- | 0.5264 | 0.15 | 300 | 0.5324 | 0.0414 | -0.9793 | 0.7656 | 1.0207 | -266.7627 | -253.8209 | -2.7892 | -2.8122 |
320
- | 0.5536 | 0.21 | 400 | 0.4957 | -0.0185 | -1.5276 | 0.7969 | 1.5091 | -272.2460 | -254.4203 | -2.8542 | -2.8764 |
321
- | 0.5362 | 0.26 | 500 | 0.5031 | -0.2630 | -1.5917 | 0.7812 | 1.3287 | -272.8869 | -256.8653 | -2.8702 | -2.8958 |
322
- | 0.5966 | 0.31 | 600 | 0.5963 | -0.2993 | -1.6491 | 0.7812 | 1.3499 | -273.4614 | -257.2279 | -2.8778 | -2.8986 |
323
- | 0.5014 | 0.36 | 700 | 0.5382 | -0.2859 | -1.4750 | 0.75 | 1.1891 | -271.7204 | -257.0942 | -2.7659 | -2.7869 |
324
- | 0.5334 | 0.41 | 800 | 0.5677 | -0.4289 | -1.8968 | 0.7969 | 1.4679 | -275.9378 | -258.5242 | -2.7053 | -2.7265 |
325
- | 0.5251 | 0.46 | 900 | 0.5772 | -0.2116 | -1.3107 | 0.7344 | 1.0991 | -270.0768 | -256.3507 | -2.8463 | -2.8662 |
326
- | 0.5205 | 0.52 | 1000 | 0.5262 | -0.3792 | -1.8585 | 0.7188 | 1.4793 | -275.5552 | -258.0276 | -2.7893 | -2.7979 |
327
- | 0.5094 | 0.57 | 1100 | 0.5433 | -0.6279 | -1.9368 | 0.7969 | 1.3089 | -276.3377 | -260.5136 | -2.7453 | -2.7536 |
328
- | 0.5837 | 0.62 | 1200 | 0.5349 | -0.3780 | -1.9584 | 0.7656 | 1.5804 | -276.5542 | -258.0154 | -2.7643 | -2.7756 |
329
- | 0.5214 | 0.67 | 1300 | 0.5732 | -1.0055 | -2.2306 | 0.7656 | 1.2251 | -279.2761 | -264.2903 | -2.6986 | -2.7113 |
330
- | 0.6914 | 0.72 | 1400 | 0.5137 | -0.6912 | -2.1775 | 0.7969 | 1.4863 | -278.7448 | -261.1467 | -2.7166 | -2.7275 |
331
- | 0.4655 | 0.77 | 1500 | 0.5090 | -0.7987 | -2.2930 | 0.7031 | 1.4943 | -279.8999 | -262.2220 | -2.6651 | -2.6838 |
332
- | 0.5731 | 0.83 | 1600 | 0.5312 | -0.8253 | -2.3520 | 0.7812 | 1.5268 | -280.4902 | -262.4876 | -2.6543 | -2.6728 |
333
- | 0.5233 | 0.88 | 1700 | 0.5206 | -0.4573 | -2.0951 | 0.7812 | 1.6377 | -277.9205 | -258.8084 | -2.6870 | -2.7097 |
334
- | 0.5593 | 0.93 | 1800 | 0.5231 | -0.5508 | -2.2000 | 0.7969 | 1.6492 | -278.9703 | -259.7433 | -2.6221 | -2.6519 |
335
- | 0.4967 | 0.98 | 1900 | 0.5290 | -0.5340 | -1.9570 | 0.8281 | 1.4230 | -276.5395 | -259.5749 | -2.6564 | -2.6878 |
336
- | 0.0921 | 1.03 | 2000 | 0.5368 | -1.1376 | -3.1615 | 0.7812 | 2.0239 | -288.5854 | -265.6111 | -2.6040 | -2.6345 |
337
- | 0.0733 | 1.08 | 2100 | 0.5453 | -1.1045 | -3.4451 | 0.7656 | 2.3406 | -291.4208 | -265.2799 | -2.6289 | -2.6595 |
338
- | 0.0972 | 1.14 | 2200 | 0.5571 | -1.6915 | -3.9823 | 0.8125 | 2.2908 | -296.7934 | -271.1505 | -2.6471 | -2.6709 |
339
- | 0.1058 | 1.19 | 2300 | 0.5789 | -1.0621 | -3.8941 | 0.7969 | 2.8319 | -295.9106 | -264.8563 | -2.5527 | -2.5798 |
340
- | 0.2423 | 1.24 | 2400 | 0.5455 | -1.1963 | -3.5590 | 0.7812 | 2.3627 | -292.5599 | -266.1981 | -2.5414 | -2.5784 |
341
- | 0.1177 | 1.29 | 2500 | 0.5889 | -1.8141 | -4.3942 | 0.7969 | 2.5801 | -300.9120 | -272.3761 | -2.4802 | -2.5189 |
342
- | 0.1213 | 1.34 | 2600 | 0.5683 | -1.4608 | -3.8420 | 0.8125 | 2.3812 | -295.3901 | -268.8436 | -2.4774 | -2.5207 |
343
- | 0.0889 | 1.39 | 2700 | 0.5890 | -1.6007 | -3.7337 | 0.7812 | 2.1330 | -294.3068 | -270.2423 | -2.4123 | -2.4522 |
344
- | 0.0995 | 1.45 | 2800 | 0.6073 | -1.5519 | -3.8362 | 0.8281 | 2.2843 | -295.3315 | -269.7538 | -2.4685 | -2.5050 |
345
- | 0.1145 | 1.5 | 2900 | 0.5790 | -1.7939 | -4.2876 | 0.8438 | 2.4937 | -299.8461 | -272.1744 | -2.4272 | -2.4674 |
346
- | 0.0644 | 1.55 | 3000 | 0.5735 | -1.7285 | -4.2051 | 0.8125 | 2.4766 | -299.0209 | -271.5201 | -2.4193 | -2.4574 |
347
- | 0.0798 | 1.6 | 3100 | 0.5537 | -1.7226 | -4.2850 | 0.8438 | 2.5624 | -299.8200 | -271.4610 | -2.5367 | -2.5696 |
348
- | 0.1013 | 1.65 | 3200 | 0.5575 | -1.5715 | -3.9813 | 0.875 | 2.4098 | -296.7825 | -269.9498 | -2.4926 | -2.5267 |
349
- | 0.1254 | 1.7 | 3300 | 0.5905 | -1.6412 | -4.4703 | 0.8594 | 2.8291 | -301.6730 | -270.6473 | -2.5017 | -2.5340 |
350
- | 0.085 | 1.76 | 3400 | 0.6133 | -1.9159 | -4.6760 | 0.8438 | 2.7601 | -303.7296 | -273.3941 | -2.4614 | -2.4960 |
351
- | 0.065 | 1.81 | 3500 | 0.6074 | -1.8237 | -4.3525 | 0.8594 | 2.5288 | -300.4951 | -272.4724 | -2.4597 | -2.5004 |
352
- | 0.0755 | 1.86 | 3600 | 0.5836 | -1.9252 | -4.4005 | 0.8125 | 2.4753 | -300.9748 | -273.4872 | -2.4327 | -2.4716 |
353
- | 0.0746 | 1.91 | 3700 | 0.5789 | -1.9280 | -4.4906 | 0.8125 | 2.5626 | -301.8762 | -273.5149 | -2.4686 | -2.5115 |
354
- | 0.1348 | 1.96 | 3800 | 0.6015 | -1.8658 | -4.2428 | 0.8281 | 2.3769 | -299.3976 | -272.8936 | -2.4943 | -2.5393 |
355
- | 0.0217 | 2.01 | 3900 | 0.6122 | -2.3335 | -4.9229 | 0.8281 | 2.5894 | -306.1988 | -277.5699 | -2.4841 | -2.5272 |
356
- | 0.0219 | 2.07 | 4000 | 0.6522 | -2.9890 | -6.0164 | 0.8281 | 3.0274 | -317.1334 | -284.1248 | -2.4105 | -2.4545 |
357
- | 0.0119 | 2.12 | 4100 | 0.6922 | -3.4777 | -6.6749 | 0.7969 | 3.1972 | -323.7187 | -289.0121 | -2.4272 | -2.4699 |
358
- | 0.0153 | 2.17 | 4200 | 0.6993 | -3.2406 | -6.6775 | 0.7969 | 3.4369 | -323.7453 | -286.6413 | -2.4047 | -2.4465 |
359
- | 0.011 | 2.22 | 4300 | 0.7178 | -3.7991 | -7.4397 | 0.7656 | 3.6406 | -331.3667 | -292.2260 | -2.3843 | -2.4290 |
360
- | 0.0072 | 2.27 | 4400 | 0.6840 | -3.3269 | -6.8021 | 0.8125 | 3.4752 | -324.9908 | -287.5042 | -2.4095 | -2.4536 |
361
- | 0.0197 | 2.32 | 4500 | 0.7013 | -3.6890 | -7.3014 | 0.8125 | 3.6124 | -329.9841 | -291.1250 | -2.4118 | -2.4543 |
362
- | 0.0182 | 2.37 | 4600 | 0.7476 | -3.8994 | -7.5366 | 0.8281 | 3.6372 | -332.3356 | -293.2291 | -2.4163 | -2.4565 |
363
- | 0.0125 | 2.43 | 4700 | 0.7199 | -4.0560 | -7.5765 | 0.8438 | 3.5204 | -332.7345 | -294.7952 | -2.3699 | -2.4100 |
364
- | 0.0082 | 2.48 | 4800 | 0.7048 | -3.6613 | -7.1356 | 0.875 | 3.4743 | -328.3255 | -290.8477 | -2.3925 | -2.4303 |
365
- | 0.0118 | 2.53 | 4900 | 0.6976 | -3.7908 | -7.3152 | 0.8125 | 3.5244 | -330.1224 | -292.1431 | -2.3633 | -2.4047 |
366
- | 0.0118 | 2.58 | 5000 | 0.7198 | -3.9049 | -7.5557 | 0.8281 | 3.6508 | -332.5271 | -293.2844 | -2.3764 | -2.4194 |
367
- | 0.006 | 2.63 | 5100 | 0.7506 | -4.2118 | -7.9149 | 0.8125 | 3.7032 | -336.1194 | -296.3530 | -2.3407 | -2.3860 |
368
- | 0.0143 | 2.68 | 5200 | 0.7408 | -4.2433 | -7.9802 | 0.8125 | 3.7369 | -336.7721 | -296.6682 | -2.3509 | -2.3946 |
369
- | 0.0057 | 2.74 | 5300 | 0.7552 | -4.3392 | -8.0831 | 0.7969 | 3.7439 | -337.8013 | -297.6275 | -2.3388 | -2.3842 |
370
- | 0.0138 | 2.79 | 5400 | 0.7404 | -4.2395 | -7.9762 | 0.8125 | 3.7367 | -336.7322 | -296.6304 | -2.3286 | -2.3737 |
371
- | 0.0079 | 2.84 | 5500 | 0.7525 | -4.4466 | -8.2196 | 0.7812 | 3.7731 | -339.1662 | -298.7007 | -2.3200 | -2.3641 |
372
- | 0.0077 | 2.89 | 5600 | 0.7520 | -4.5586 | -8.3485 | 0.7969 | 3.7899 | -340.4545 | -299.8206 | -2.3078 | -2.3517 |
373
- | 0.0094 | 2.94 | 5700 | 0.7527 | -4.5542 | -8.3509 | 0.7812 | 3.7967 | -340.4790 | -299.7773 | -2.3062 | -2.3510 |
374
- | 0.0054 | 2.99 | 5800 | 0.7520 | -4.5169 | -8.3079 | 0.7812 | 3.7911 | -340.0493 | -299.4038 | -2.3081 | -2.3530 |
375
-
376
-
377
- ### Framework versions
378
-
379
- - Transformers 4.35.0.dev0
380
- - Pytorch 2.0.1+cu118
381
- - Datasets 2.12.0
382
- - Tokenizers 0.14.0
383
-
384
- ## Citation
385
-
386
- If you find Zephyr-7B-β is useful in your work, please cite it with:
387
-
388
- ```
389
- @misc{tunstall2023zephyr,
390
- title={Zephyr: Direct Distillation of LM Alignment},
391
- author={Lewis Tunstall and Edward Beeching and Nathan Lambert and Nazneen Rajani and Kashif Rasul and Younes Belkada and Shengyi Huang and Leandro von Werra and Clémentine Fourrier and Nathan Habib and Nathan Sarrazin and Omar Sanseviero and Alexander M. Rush and Thomas Wolf},
392
- year={2023},
393
- eprint={2310.16944},
394
- archivePrefix={arXiv},
395
- primaryClass={cs.LG}
396
  }
397
  ```
398
- # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
399
- Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_HuggingFaceH4__zephyr-7b-beta)
400
 
401
- | Metric | Value |
402
- |-----------------------|---------------------------|
403
- | Avg. | 52.15 |
404
- | ARC (25-shot) | 62.03 |
405
- | HellaSwag (10-shot) | 84.36 |
406
- | MMLU (5-shot) | 61.07 |
407
- | TruthfulQA (0-shot) | 57.45 |
408
- | Winogrande (5-shot) | 77.74 |
409
- | GSM8K (5-shot) | 12.74 |
410
- | DROP (3-shot) | 9.66 |
 
180
 
181
  <img src="https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha/resolve/main/thumbnail.png" alt="Zephyr Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
182
 
183
+ # Neuronx model for [Zephyr 7B β](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta)
184
 
185
+ This repository contains [**AWS Inferentia2**](https://aws.amazon.com/ec2/instance-types/inf2/) and [`neuronx`](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/) compatible checkpoints for [HuggingFaceH4/zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta).
186
+ You can find detailed information about the base model on its [Model Card](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta).
187
 
188
+ This model has been exported to the `neuron` format using specific `input_shapes` and `compiler` parameters detailed in the paragraphs below.
189
 
190
+ Please refer to the 🤗 `optimum-neuron` [documentation](https://huggingface.co/docs/optimum-neuron/main/en/guides/models#configuring-the-export-of-a-generative-model) for an explanation of these parameters.
191
 
192
+ ## Usage on Amazon SageMaker
193
 
194
+ _coming soon_
 
 
 
195
 
196
+ ## Usage with 🤗 `optimum-neuron`
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
197
 
198
  ```python
199
+ from optimum.neuron import pipeline
 
 
 
 
 
 
 
200
 
201
+ p = pipeline('text-generation', 'aws-neuron/zephyr-7b-seqlen-2048-bs-4-cores-2')
202
  # We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
203
  messages = [
204
  {
 
210
  prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
211
  outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
212
  print(outputs[0]["generated_text"])
 
 
 
 
 
 
213
  ```
214
 
215
+ This repository contains tags specific to versions of `neuronx`. When using with 🤗 `optimum-neuron`, use the repo revision specific to the version of `neuronx` you are using, to load the right serialized checkpoints.
 
 
 
 
 
216
 
217
+ ## Arguments passed during export
218
 
219
+ **input_shapes**
220
 
221
+ ```json
222
+ {
223
+ "batch_size": 4,
224
+ "sequence_length": 2048,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
225
  }
226
  ```
 
 
227
 
228
+ **compiler_args**
229
+
230
+ ```json
231
+ {
232
+ "auto_cast_type": "fp16",
233
+ "num_cores": 2,
234
+ }
235
+ ```