#!/usr/bin/python3 | |
import pickle | |
# import numpy as np # linear algebra | |
# import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) | |
# import pandas as pd | |
# import numpy as np | |
# import re | |
# import nltk | |
# from nltk.corpus import stopwords | |
# from nltk.stem import WordNetLemmatizer | |
# from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer, TfidfTransformer | |
# from sklearn.decomposition import LatentDirichletAllocation | |
# from sklearn.model_selection import train_test_split | |
# from sklearn.naive_bayes import MultinomialNB | |
# from sklearn.metrics import accuracy_score, confusion_matrix | |
# from sklearn.linear_model import LogisticRegression | |
# from sklearn.tree import DecisionTreeClassifier | |
# from sklearn.ensemble import RandomForestClassifier | |
# from sklearn.pipeline import Pipeline | |
# from sklearn.model_selection import GridSearchCV | |
# from sklearn.metrics import classification_report | |
file_name = 'best_model.pkl' | |
with open(file_name, 'rb') as file: | |
model = pickle.load(file) | |
# ohe = joblib.load('state_ohe.pkl') | |
class_mapping = ['Music', 'Death', 'Environment', 'Affection'] | |
class Profit: | |
def __init__(self,data): | |
self.data = data | |
def predict(self): | |
d_data = [data] | |
predict = model.predict(d_data)[0] | |
print(f"This prediction is: {class_mapping[predict-1]}\n") | |
if __name__ == "__main__": | |
print("************************") | |
print("Poem prediction") | |
print("************************\n\n") | |
data = input('Enter Poem: ') | |
obj = Profit(data) | |
obj.predict() |