End of training
Browse files- README.md +81 -0
- logs/events.out.tfevents.1709878071.533af087a84b.2561.0 +2 -2
- model.safetensors +1 -1
- preprocessor_config.json +13 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +80 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: microsoft/layoutlm-base-uncased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- funsd
|
8 |
+
model-index:
|
9 |
+
- name: layoutlm-funsd
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# layoutlm-funsd
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 1.0307
|
21 |
+
- Answer: {'precision': 0.3855302279484638, 'recall': 0.48084054388133496, 'f1': 0.4279427942794279, 'number': 809}
|
22 |
+
- Header: {'precision': 0.34782608695652173, 'recall': 0.2689075630252101, 'f1': 0.3033175355450237, 'number': 119}
|
23 |
+
- Question: {'precision': 0.48268238761974946, 'recall': 0.6150234741784038, 'f1': 0.5408753096614369, 'number': 1065}
|
24 |
+
- Overall Precision: 0.4378
|
25 |
+
- Overall Recall: 0.5399
|
26 |
+
- Overall F1: 0.4835
|
27 |
+
- Overall Accuracy: 0.6393
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 3e-05
|
47 |
+
- train_batch_size: 16
|
48 |
+
- eval_batch_size: 8
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 15
|
53 |
+
- mixed_precision_training: Native AMP
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
59 |
+
| 1.7508 | 1.0 | 10 | 1.5163 | {'precision': 0.07105263157894737, 'recall': 0.10012360939431397, 'f1': 0.08311954848640328, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.2490566037735849, 'recall': 0.18591549295774648, 'f1': 0.2129032258064516, 'number': 1065} | 0.1442 | 0.1400 | 0.1421 | 0.3638 |
|
60 |
+
| 1.4483 | 2.0 | 20 | 1.3842 | {'precision': 0.19585898153329603, 'recall': 0.4326328800988875, 'f1': 0.2696456086286595, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.27010309278350514, 'recall': 0.36901408450704226, 'f1': 0.3119047619047619, 'number': 1065} | 0.2286 | 0.3728 | 0.2834 | 0.4135 |
|
61 |
+
| 1.3068 | 3.0 | 30 | 1.2439 | {'precision': 0.2390092879256966, 'recall': 0.47713226205191595, 'f1': 0.3184818481848185, 'number': 809} | {'precision': 0.03125, 'recall': 0.01680672268907563, 'f1': 0.02185792349726776, 'number': 119} | {'precision': 0.32887189292543023, 'recall': 0.48450704225352115, 'f1': 0.39179954441913445, 'number': 1065} | 0.2783 | 0.4536 | 0.3450 | 0.4631 |
|
62 |
+
| 1.1868 | 4.0 | 40 | 1.1443 | {'precision': 0.25613802256138024, 'recall': 0.47713226205191595, 'f1': 0.33333333333333337, 'number': 809} | {'precision': 0.1797752808988764, 'recall': 0.13445378151260504, 'f1': 0.15384615384615385, 'number': 119} | {'precision': 0.3619233268356075, 'recall': 0.5230046948356808, 'f1': 0.42780337941628266, 'number': 1065} | 0.3059 | 0.4812 | 0.3740 | 0.5267 |
|
63 |
+
| 1.0837 | 5.0 | 50 | 1.1479 | {'precision': 0.27571728481455565, 'recall': 0.48702101359703337, 'f1': 0.3521000893655049, 'number': 809} | {'precision': 0.2696629213483146, 'recall': 0.20168067226890757, 'f1': 0.23076923076923078, 'number': 119} | {'precision': 0.3705616526791478, 'recall': 0.5389671361502347, 'f1': 0.4391736801836266, 'number': 1065} | 0.3234 | 0.4977 | 0.3921 | 0.5252 |
|
64 |
+
| 1.0102 | 6.0 | 60 | 1.1154 | {'precision': 0.29912810194500333, 'recall': 0.5512978986402967, 'f1': 0.3878260869565217, 'number': 809} | {'precision': 0.2604166666666667, 'recall': 0.21008403361344538, 'f1': 0.23255813953488375, 'number': 119} | {'precision': 0.44872918492550395, 'recall': 0.4807511737089202, 'f1': 0.4641885766092475, 'number': 1065} | 0.3603 | 0.4932 | 0.4164 | 0.5831 |
|
65 |
+
| 0.9349 | 7.0 | 70 | 1.0180 | {'precision': 0.3333333333333333, 'recall': 0.4289245982694685, 'f1': 0.37513513513513513, 'number': 809} | {'precision': 0.32558139534883723, 'recall': 0.23529411764705882, 'f1': 0.2731707317073171, 'number': 119} | {'precision': 0.42487046632124353, 'recall': 0.615962441314554, 'f1': 0.5028746646224608, 'number': 1065} | 0.3860 | 0.5173 | 0.4421 | 0.6121 |
|
66 |
+
| 0.8786 | 8.0 | 80 | 1.0198 | {'precision': 0.3177723177723178, 'recall': 0.4796044499381953, 'f1': 0.3822660098522168, 'number': 809} | {'precision': 0.2815533980582524, 'recall': 0.24369747899159663, 'f1': 0.26126126126126126, 'number': 119} | {'precision': 0.4321808510638298, 'recall': 0.6103286384976526, 'f1': 0.5060334760607241, 'number': 1065} | 0.3773 | 0.5354 | 0.4426 | 0.6088 |
|
67 |
+
| 0.8204 | 9.0 | 90 | 1.0123 | {'precision': 0.3665987780040733, 'recall': 0.44499381953028433, 'f1': 0.40201005025125625, 'number': 809} | {'precision': 0.2903225806451613, 'recall': 0.226890756302521, 'f1': 0.25471698113207547, 'number': 119} | {'precision': 0.45675482487491065, 'recall': 0.6, 'f1': 0.5186688311688312, 'number': 1065} | 0.4147 | 0.5148 | 0.4594 | 0.6320 |
|
68 |
+
| 0.8126 | 10.0 | 100 | 1.0461 | {'precision': 0.37877312560856863, 'recall': 0.48084054388133496, 'f1': 0.42374727668845313, 'number': 809} | {'precision': 0.3, 'recall': 0.226890756302521, 'f1': 0.25837320574162675, 'number': 119} | {'precision': 0.4764521193092622, 'recall': 0.5699530516431925, 'f1': 0.5190252244548953, 'number': 1065} | 0.4279 | 0.5133 | 0.4667 | 0.6288 |
|
69 |
+
| 0.7357 | 11.0 | 110 | 1.0160 | {'precision': 0.3771839671120247, 'recall': 0.453646477132262, 'f1': 0.4118967452300786, 'number': 809} | {'precision': 0.29357798165137616, 'recall': 0.2689075630252101, 'f1': 0.28070175438596495, 'number': 119} | {'precision': 0.4672639558924879, 'recall': 0.6366197183098592, 'f1': 0.5389507154213037, 'number': 1065} | 0.4252 | 0.5404 | 0.4759 | 0.6369 |
|
70 |
+
| 0.7249 | 12.0 | 120 | 1.0246 | {'precision': 0.38046795523906407, 'recall': 0.4622991347342398, 'f1': 0.4174107142857143, 'number': 809} | {'precision': 0.29411764705882354, 'recall': 0.25210084033613445, 'f1': 0.27149321266968324, 'number': 119} | {'precision': 0.4727403156384505, 'recall': 0.6187793427230047, 'f1': 0.5359902399349329, 'number': 1065} | 0.4288 | 0.5334 | 0.4754 | 0.6387 |
|
71 |
+
| 0.7015 | 13.0 | 130 | 1.0335 | {'precision': 0.36654135338345867, 'recall': 0.4820766378244747, 'f1': 0.416444207154298, 'number': 809} | {'precision': 0.31521739130434784, 'recall': 0.24369747899159663, 'f1': 0.27488151658767773, 'number': 119} | {'precision': 0.4788104089219331, 'recall': 0.6046948356807512, 'f1': 0.5344398340248964, 'number': 1065} | 0.4250 | 0.5334 | 0.4731 | 0.6326 |
|
72 |
+
| 0.6696 | 14.0 | 140 | 1.0364 | {'precision': 0.3841121495327103, 'recall': 0.5080346106304079, 'f1': 0.43746673762639704, 'number': 809} | {'precision': 0.32941176470588235, 'recall': 0.23529411764705882, 'f1': 0.2745098039215686, 'number': 119} | {'precision': 0.48804934464148036, 'recall': 0.5943661971830986, 'f1': 0.5359864521591872, 'number': 1065} | 0.4372 | 0.5379 | 0.4823 | 0.6394 |
|
73 |
+
| 0.6661 | 15.0 | 150 | 1.0307 | {'precision': 0.3855302279484638, 'recall': 0.48084054388133496, 'f1': 0.4279427942794279, 'number': 809} | {'precision': 0.34782608695652173, 'recall': 0.2689075630252101, 'f1': 0.3033175355450237, 'number': 119} | {'precision': 0.48268238761974946, 'recall': 0.6150234741784038, 'f1': 0.5408753096614369, 'number': 1065} | 0.4378 | 0.5399 | 0.4835 | 0.6393 |
|
74 |
+
|
75 |
+
|
76 |
+
### Framework versions
|
77 |
+
|
78 |
+
- Transformers 4.38.2
|
79 |
+
- Pytorch 2.2.1+cu121
|
80 |
+
- Datasets 2.18.0
|
81 |
+
- Tokenizers 0.15.2
|
logs/events.out.tfevents.1709878071.533af087a84b.2561.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b9bfc2fd326bbe9fc60afb6187f1af33688a37992e5d6ffc04c40f19ae622677
|
3 |
+
size 15738
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 450558212
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d4c38129dbe1a57b25d75b07348663920dc556d3963a2f842b3e6d7cf0b69771
|
3 |
size 450558212
|
preprocessor_config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"apply_ocr": true,
|
3 |
+
"do_resize": true,
|
4 |
+
"image_processor_type": "LayoutLMv2ImageProcessor",
|
5 |
+
"ocr_lang": null,
|
6 |
+
"processor_class": "LayoutLMv2Processor",
|
7 |
+
"resample": 2,
|
8 |
+
"size": {
|
9 |
+
"height": 224,
|
10 |
+
"width": 224
|
11 |
+
},
|
12 |
+
"tesseract_config": ""
|
13 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"additional_special_tokens": [],
|
45 |
+
"apply_ocr": false,
|
46 |
+
"clean_up_tokenization_spaces": true,
|
47 |
+
"cls_token": "[CLS]",
|
48 |
+
"cls_token_box": [
|
49 |
+
0,
|
50 |
+
0,
|
51 |
+
0,
|
52 |
+
0
|
53 |
+
],
|
54 |
+
"do_basic_tokenize": true,
|
55 |
+
"do_lower_case": true,
|
56 |
+
"mask_token": "[MASK]",
|
57 |
+
"model_max_length": 512,
|
58 |
+
"never_split": null,
|
59 |
+
"only_label_first_subword": true,
|
60 |
+
"pad_token": "[PAD]",
|
61 |
+
"pad_token_box": [
|
62 |
+
0,
|
63 |
+
0,
|
64 |
+
0,
|
65 |
+
0
|
66 |
+
],
|
67 |
+
"pad_token_label": -100,
|
68 |
+
"processor_class": "LayoutLMv2Processor",
|
69 |
+
"sep_token": "[SEP]",
|
70 |
+
"sep_token_box": [
|
71 |
+
1000,
|
72 |
+
1000,
|
73 |
+
1000,
|
74 |
+
1000
|
75 |
+
],
|
76 |
+
"strip_accents": null,
|
77 |
+
"tokenize_chinese_chars": true,
|
78 |
+
"tokenizer_class": "LayoutLMv2Tokenizer",
|
79 |
+
"unk_token": "[UNK]"
|
80 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|