File size: 5,724 Bytes
a341115 63b1277 a341115 83386b9 a341115 63b1277 a341115 63b1277 a341115 e6ec0ef a341115 e6ec0ef 83386b9 e6ec0ef 83386b9 a341115 e6ec0ef a341115 63b1277 a341115 63b1277 a341115 63b1277 a341115 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: output_v3
results: []
widget:
- text: >-
<|endoftext|>MAADGYLPDWLEDNLSEGIREWWALKPGAPQPKANQQHQDNARGLVLPGYKYLGPGNGL
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# output_v3
This model is a fine-tuned version of [avuhong/ParvoGPT2](https://huggingface.co/avuhong/ParvoGPT2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4775
- Accuracy: 0.9290
## Model description
This model is a GPT2-like model for generating capsid amino acid sequences. It was trained exclusively on capsid aa_seqs of Piccovirales members.
## Intended uses & limitations
As a typical GPT model, it can be used to generate new sequences or used to evaluate the perplexity of given sequences.
### Generate novel sequences for viral capsid proteins
```python
from transformers import pipeline
protgpt2 = pipeline('text-generation', model="avuhong/PiccoviralesGPT")
sequences = protgpt2("<|endoftext|>", max_length=750, do_sample=True, top_k=950, repetition_penalty=1.2, num_return_sequences=10, eos_token_id=0)
```
### Calculate the perplexity of a protein sequence
```python
def calculatePerplexity(sequence, model, tokenizer):
input_ids = torch.tensor(tokenizer.encode(sequence)).unsqueeze(0)
input_ids = input_ids.to(device)
with torch.no_grad():
outputs = model(input_ids, labels=input_ids)
loss, logits = outputs[:2]
return math.exp(loss)
def split_sequence(sequence):
chunks = []
max_i = 0
for i in range(0, len(sequence), 60):
chunk = sequence[i:i+60]
if i == 0:
chunk = '<|endoftext|>' + chunk[:-1]
chunks.append(chunk)
max_i = i
chunks = '\n'.join(chunks)
if max_i+61==len(sequence):
chunks = chunks+"\n<|endoftext|>"
else:
chunks = chunks+"<|endoftext|>"
return chunks
seq = "MAADGYLPDWLEDNLSEGIREWWALKPGAPQPKANQQHQDNARGLVLPGYKYLGPGNGLDKGEPVNAADAAALEHDKAYDQQLKAGDNPYLKYNHADAEFQERLKEDTSFGGNLGRAVFQAKKRLLEPLGLVEEAAKTAPGKKRPVEQSPQEPDSSAGIGKSGAQPAKKRLNFGQTGDTESVPDPQPIGEPPAAPSGVGSLTMASGGGAPVADNNEGADGVGSSSGNWHCDSQWLGDRVITTSTRTWALPTYNNHLYKQISNSTSGGSSNDNAYFGYSTPWGYFDFNRFHCHFSPRDWQRLINNNWGFRPKRLNFKLFNIQVKEVTDNNGVKTIANNLTSTVQVFTDSDYQLPYVLGSAHEGCLPPFPADVFMIPQYGYLTLNDGSQAVGRSSFYCLEYFPSQMLRTGNNFQFSYEFENVPFHSSYAHSQSLDRLMNPLIDQYLYYLSKTINGSGQNQQTLKFSVAGPSNMAVQGRNYIPGPSYRQQRVSTTVTQNNNSEFAWPGASSWALNGRNSLMNPGPAMASHKEGEDRFFPLSGSLIFGKQGTGRDNVDADKVMITNEEEIKTTNPVATESYGQVATNHQSAQAQAQTGWVQNQGILPGMVWQDRDVYLQGPIWAKIPHTDGNFHPSPLMGGFGMKHPPPQILIKNTPVPADPPTAFNKDKLNSFITQYSTGQVSVEIEWELQKENSKRWNPEIQYTSNYYKSNNVEFAVNTEGVYSEPRPIGTRYLTRNL"
seq = split_sequence(seq)
print(f"{calculatePerplexity(seq, model, tokenizer):.2f}")
```
## Training and evaluation data
Traning script is included in bash file in this repository.
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- total_eval_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 32.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 220 | 1.1623 | 0.8225 |
| No log | 2.0 | 440 | 0.9566 | 0.8539 |
| 1.1942 | 3.0 | 660 | 0.8456 | 0.8709 |
| 1.1942 | 4.0 | 880 | 0.7719 | 0.8801 |
| 0.7805 | 5.0 | 1100 | 0.7224 | 0.8872 |
| 0.7805 | 6.0 | 1320 | 0.6895 | 0.8928 |
| 0.6257 | 7.0 | 1540 | 0.6574 | 0.8972 |
| 0.6257 | 8.0 | 1760 | 0.6289 | 0.9014 |
| 0.6257 | 9.0 | 1980 | 0.6054 | 0.9045 |
| 0.5385 | 10.0 | 2200 | 0.5881 | 0.9077 |
| 0.5385 | 11.0 | 2420 | 0.5709 | 0.9102 |
| 0.4778 | 12.0 | 2640 | 0.5591 | 0.9121 |
| 0.4778 | 13.0 | 2860 | 0.5497 | 0.9143 |
| 0.427 | 14.0 | 3080 | 0.5385 | 0.9161 |
| 0.427 | 15.0 | 3300 | 0.5258 | 0.9180 |
| 0.394 | 16.0 | 3520 | 0.5170 | 0.9195 |
| 0.394 | 17.0 | 3740 | 0.5157 | 0.9212 |
| 0.394 | 18.0 | 3960 | 0.5038 | 0.9221 |
| 0.363 | 19.0 | 4180 | 0.4977 | 0.9234 |
| 0.363 | 20.0 | 4400 | 0.4976 | 0.9236 |
| 0.3392 | 21.0 | 4620 | 0.4924 | 0.9247 |
| 0.3392 | 22.0 | 4840 | 0.4888 | 0.9255 |
| 0.33 | 23.0 | 5060 | 0.4890 | 0.9262 |
| 0.33 | 24.0 | 5280 | 0.4856 | 0.9268 |
| 0.3058 | 25.0 | 5500 | 0.4803 | 0.9275 |
| 0.3058 | 26.0 | 5720 | 0.4785 | 0.9277 |
| 0.3058 | 27.0 | 5940 | 0.4813 | 0.9281 |
| 0.2973 | 28.0 | 6160 | 0.4799 | 0.9282 |
| 0.2973 | 29.0 | 6380 | 0.4773 | 0.9285 |
| 0.2931 | 30.0 | 6600 | 0.4778 | 0.9286 |
| 0.2931 | 31.0 | 6820 | 0.4756 | 0.9290 |
| 0.2879 | 32.0 | 7040 | 0.4775 | 0.9290 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu117
- Datasets 2.9.0
- Tokenizers 0.13.2
|