File size: 5,724 Bytes
a341115
 
 
 
 
 
 
63b1277
a341115
83386b9
 
 
a341115
 
 
 
 
63b1277
a341115
 
 
63b1277
 
a341115
 
 
e6ec0ef
a341115
 
 
e6ec0ef
 
83386b9
 
e6ec0ef
 
 
 
 
 
83386b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a341115
 
 
e6ec0ef
a341115
 
 
 
 
 
63b1277
a341115
 
 
 
 
 
 
 
 
 
63b1277
a341115
 
 
 
 
 
63b1277
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a341115
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: output_v3
  results: []
widget:
  - text: >-
      <|endoftext|>MAADGYLPDWLEDNLSEGIREWWALKPGAPQPKANQQHQDNARGLVLPGYKYLGPGNGL
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# output_v3

This model is a fine-tuned version of [avuhong/ParvoGPT2](https://huggingface.co/avuhong/ParvoGPT2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4775
- Accuracy: 0.9290

## Model description

This model is a GPT2-like model for generating capsid amino acid sequences. It was trained exclusively on capsid aa_seqs of Piccovirales members.

## Intended uses & limitations

As a typical GPT model, it can be used to generate new sequences or used to evaluate the perplexity of given sequences.

### Generate novel sequences for viral capsid proteins

```python
from transformers import pipeline
protgpt2 = pipeline('text-generation', model="avuhong/PiccoviralesGPT")
sequences = protgpt2("<|endoftext|>", max_length=750, do_sample=True, top_k=950, repetition_penalty=1.2, num_return_sequences=10, eos_token_id=0)
```

### Calculate the perplexity of a protein sequence

```python
def calculatePerplexity(sequence, model, tokenizer):
    input_ids = torch.tensor(tokenizer.encode(sequence)).unsqueeze(0) 
    input_ids = input_ids.to(device)
    with torch.no_grad():
        outputs = model(input_ids, labels=input_ids)
    loss, logits = outputs[:2]
    return math.exp(loss)

def split_sequence(sequence):
    chunks = []
    max_i = 0
    for i in range(0, len(sequence), 60):
        chunk = sequence[i:i+60]
        
        if i == 0:
            chunk = '<|endoftext|>' + chunk[:-1]
        chunks.append(chunk)
        max_i = i
    
    chunks = '\n'.join(chunks)
    
    if max_i+61==len(sequence):
        chunks = chunks+"\n<|endoftext|>"
    else:
        chunks = chunks+"<|endoftext|>"
    return chunks

seq = "MAADGYLPDWLEDNLSEGIREWWALKPGAPQPKANQQHQDNARGLVLPGYKYLGPGNGLDKGEPVNAADAAALEHDKAYDQQLKAGDNPYLKYNHADAEFQERLKEDTSFGGNLGRAVFQAKKRLLEPLGLVEEAAKTAPGKKRPVEQSPQEPDSSAGIGKSGAQPAKKRLNFGQTGDTESVPDPQPIGEPPAAPSGVGSLTMASGGGAPVADNNEGADGVGSSSGNWHCDSQWLGDRVITTSTRTWALPTYNNHLYKQISNSTSGGSSNDNAYFGYSTPWGYFDFNRFHCHFSPRDWQRLINNNWGFRPKRLNFKLFNIQVKEVTDNNGVKTIANNLTSTVQVFTDSDYQLPYVLGSAHEGCLPPFPADVFMIPQYGYLTLNDGSQAVGRSSFYCLEYFPSQMLRTGNNFQFSYEFENVPFHSSYAHSQSLDRLMNPLIDQYLYYLSKTINGSGQNQQTLKFSVAGPSNMAVQGRNYIPGPSYRQQRVSTTVTQNNNSEFAWPGASSWALNGRNSLMNPGPAMASHKEGEDRFFPLSGSLIFGKQGTGRDNVDADKVMITNEEEIKTTNPVATESYGQVATNHQSAQAQAQTGWVQNQGILPGMVWQDRDVYLQGPIWAKIPHTDGNFHPSPLMGGFGMKHPPPQILIKNTPVPADPPTAFNKDKLNSFITQYSTGQVSVEIEWELQKENSKRWNPEIQYTSNYYKSNNVEFAVNTEGVYSEPRPIGTRYLTRNL"
seq = split_sequence(seq)
print(f"{calculatePerplexity(seq, model, tokenizer):.2f}")
```

## Training and evaluation data

Traning script is included in bash file in this repository.

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- total_eval_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 32.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 220  | 1.1623          | 0.8225   |
| No log        | 2.0   | 440  | 0.9566          | 0.8539   |
| 1.1942        | 3.0   | 660  | 0.8456          | 0.8709   |
| 1.1942        | 4.0   | 880  | 0.7719          | 0.8801   |
| 0.7805        | 5.0   | 1100 | 0.7224          | 0.8872   |
| 0.7805        | 6.0   | 1320 | 0.6895          | 0.8928   |
| 0.6257        | 7.0   | 1540 | 0.6574          | 0.8972   |
| 0.6257        | 8.0   | 1760 | 0.6289          | 0.9014   |
| 0.6257        | 9.0   | 1980 | 0.6054          | 0.9045   |
| 0.5385        | 10.0  | 2200 | 0.5881          | 0.9077   |
| 0.5385        | 11.0  | 2420 | 0.5709          | 0.9102   |
| 0.4778        | 12.0  | 2640 | 0.5591          | 0.9121   |
| 0.4778        | 13.0  | 2860 | 0.5497          | 0.9143   |
| 0.427         | 14.0  | 3080 | 0.5385          | 0.9161   |
| 0.427         | 15.0  | 3300 | 0.5258          | 0.9180   |
| 0.394         | 16.0  | 3520 | 0.5170          | 0.9195   |
| 0.394         | 17.0  | 3740 | 0.5157          | 0.9212   |
| 0.394         | 18.0  | 3960 | 0.5038          | 0.9221   |
| 0.363         | 19.0  | 4180 | 0.4977          | 0.9234   |
| 0.363         | 20.0  | 4400 | 0.4976          | 0.9236   |
| 0.3392        | 21.0  | 4620 | 0.4924          | 0.9247   |
| 0.3392        | 22.0  | 4840 | 0.4888          | 0.9255   |
| 0.33          | 23.0  | 5060 | 0.4890          | 0.9262   |
| 0.33          | 24.0  | 5280 | 0.4856          | 0.9268   |
| 0.3058        | 25.0  | 5500 | 0.4803          | 0.9275   |
| 0.3058        | 26.0  | 5720 | 0.4785          | 0.9277   |
| 0.3058        | 27.0  | 5940 | 0.4813          | 0.9281   |
| 0.2973        | 28.0  | 6160 | 0.4799          | 0.9282   |
| 0.2973        | 29.0  | 6380 | 0.4773          | 0.9285   |
| 0.2931        | 30.0  | 6600 | 0.4778          | 0.9286   |
| 0.2931        | 31.0  | 6820 | 0.4756          | 0.9290   |
| 0.2879        | 32.0  | 7040 | 0.4775          | 0.9290   |


### Framework versions

- Transformers 4.26.1
- Pytorch 1.13.1+cu117
- Datasets 2.9.0
- Tokenizers 0.13.2