WB Doc Topics
Collection
This is a collection of models trained on synthetically generated sentences conditional on WBG topics. The models are designed for ensembling.
•
22 items
•
Updated
This model is a fine-tuned version of microsoft/deberta-v3-small on an unknown dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
0.0929 | 0.4931 | 1000 | 0.0912 | 0.9814 | 0.0 | 0.0 | 0.0 |
0.0785 | 0.9862 | 2000 | 0.0708 | 0.9814 | 0.0 | 0.0 | 0.0 |
0.0622 | 1.4793 | 3000 | 0.0576 | 0.9823 | 0.1109 | 0.8665 | 0.0592 |
0.0542 | 1.9724 | 4000 | 0.0501 | 0.9842 | 0.3406 | 0.7715 | 0.2185 |
0.048 | 2.4655 | 5000 | 0.0461 | 0.9853 | 0.4277 | 0.7762 | 0.2952 |
0.0436 | 2.9586 | 6000 | 0.0434 | 0.9861 | 0.5112 | 0.7463 | 0.3887 |
0.0384 | 3.4517 | 7000 | 0.0414 | 0.9867 | 0.5496 | 0.7437 | 0.4358 |
0.0385 | 3.9448 | 8000 | 0.0402 | 0.9867 | 0.5363 | 0.7625 | 0.4136 |
0.0343 | 4.4379 | 9000 | 0.0396 | 0.9870 | 0.5633 | 0.7528 | 0.4500 |
0.0343 | 4.9310 | 10000 | 0.0388 | 0.9872 | 0.5772 | 0.7528 | 0.4681 |
0.0304 | 5.4241 | 11000 | 0.0388 | 0.9871 | 0.5816 | 0.7349 | 0.4812 |
0.0299 | 5.9172 | 12000 | 0.0374 | 0.9875 | 0.6071 | 0.7340 | 0.5176 |
0.0265 | 6.4103 | 13000 | 0.0377 | 0.9875 | 0.6135 | 0.7213 | 0.5337 |
0.0261 | 6.9034 | 14000 | 0.0372 | 0.9876 | 0.6117 | 0.7383 | 0.5221 |
0.0236 | 7.3964 | 15000 | 0.0377 | 0.9877 | 0.6207 | 0.7257 | 0.5423 |
0.0236 | 7.8895 | 16000 | 0.0377 | 0.9878 | 0.6228 | 0.7376 | 0.5389 |
0.0215 | 8.3826 | 17000 | 0.0379 | 0.9879 | 0.6336 | 0.7236 | 0.5634 |
0.0216 | 8.8757 | 18000 | 0.0382 | 0.9878 | 0.6330 | 0.7212 | 0.5640 |
0.0177 | 9.3688 | 19000 | 0.0382 | 0.9879 | 0.6370 | 0.7208 | 0.5707 |
Base model
microsoft/deberta-v3-small