File size: 2,380 Bytes
bdeb046
39d5a55
6dc5c1b
39d5a55
 
 
 
 
 
 
 
 
 
 
 
bdeb046
 
39d5a55
bdeb046
39d5a55
bdeb046
39d5a55
bdeb046
39d5a55
 
 
bdeb046
39d5a55
 
 
 
90f7974
39d5a55
90f7974
39d5a55
bdeb046
39d5a55
bdeb046
39d5a55
bdeb046
39d5a55
bdeb046
6dc5c1b
39d5a55
 
7d3a081
39d5a55
 
 
 
 
 
 
bdeb046
39d5a55
 
 
 
 
 
 
 
 
 
 
bdeb046
39d5a55
 
 
 
 
 
 
bdeb046
39d5a55
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
license: apache-2.0
pipeline_tag: text-generation
tags:
  - text-generation
  - causal-lm
  - instruction-tuned
  - serverless
library_name: transformers
inference: true
language:
  - en
base_model: automatedstockminingorg/expert-on-investment-valuation-mypricermodel
datasets:
  - automatedstockminingorg/investment-valuation-chunks
---

# Expert on Investment Valuation Model

## Introduction

This model is fine-tuned on data specifically curated for investment valuation, helping users with insights and explanations on various valuation techniques, including the discounted cash flow (DCF) model and comparable company analysis.

- Designed for generating text that follows instructions and role-playing in a financial advisory setting.
- Supports **long-context processing** to handle in-depth questions.
- **Multilingual support** available in English.

**This repo contains the instruction-tuned version of the model**:
- Type: Causal Language Model (instruction-tuned)
- Language: English
- Model Architecture: Transformers

For more details, please refer to our [documentation](https://huggingface.co/automatedstockminingorg/expert-on-investment-valuation-mypricermodel).

## Requirements

To ensure compatibility, use the latest version of `transformers`.

## Quickstart

Here is a code snippet to show how to load the tokenizer and model and generate responses.

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "automatedstockminingorg/14b-stockanalyst-14b-stockanalyst"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "Explain the discounted cash flow (DCF) model in investment valuation."
messages = [
    {"role": "system", "content": "You are an expert in investment valuation."},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=300
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)