File size: 2,046 Bytes
f24aff8
 
 
 
 
 
bf630ca
f24aff8
 
 
 
 
5a9ec3d
f24aff8
 
 
 
 
5a9ec3d
f24aff8
 
 
 
 
5a9ec3d
f24aff8
5a9ec3d
 
f24aff8
5a9ec3d
 
f24aff8
5a9ec3d
 
f24aff8
5a9ec3d
f24aff8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- conll2003
- autoevaluate/conll2003-sample
metrics:
- precision
- recall
- f1
- accuracy
base_model: distilbert-base-uncased
model-index:
- name: entity-extraction
  results:
  - task:
      type: token-classification
      name: Token Classification
    dataset:
      name: conll2003
      type: conll2003
      args: conll2003
    metrics:
    - type: precision
      value: 0.8862817854414493
      name: Precision
    - type: recall
      value: 0.9084908826490659
      name: Recall
    - type: f1
      value: 0.8972489227709645
      name: F1
    - type: accuracy
      value: 0.9774889986814304
      name: Accuracy
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# entity-extraction

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0808
- Precision: 0.8863
- Recall: 0.9085
- F1: 0.8972
- Accuracy: 0.9775

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.2552        | 1.0   | 878  | 0.0808          | 0.8863    | 0.9085 | 0.8972 | 0.9775   |


### Framework versions

- Transformers 4.19.2
- Pytorch 1.11.0+cu113
- Datasets 2.2.2
- Tokenizers 0.12.1