update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: deberta-pretrained-large
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# deberta-pretrained-large
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on the None dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.6471
|
18 |
+
|
19 |
+
## Model description
|
20 |
+
|
21 |
+
More information needed
|
22 |
+
|
23 |
+
## Intended uses & limitations
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Training and evaluation data
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training procedure
|
32 |
+
|
33 |
+
### Training hyperparameters
|
34 |
+
|
35 |
+
The following hyperparameters were used during training:
|
36 |
+
- learning_rate: 5e-05
|
37 |
+
- train_batch_size: 9
|
38 |
+
- eval_batch_size: 9
|
39 |
+
- seed: 42
|
40 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
41 |
+
- lr_scheduler_type: linear
|
42 |
+
- num_epochs: 5
|
43 |
+
|
44 |
+
### Training results
|
45 |
+
|
46 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
47 |
+
|:-------------:|:-----:|:------:|:---------------:|
|
48 |
+
| 0.9756 | 0.51 | 40000 | 0.9127 |
|
49 |
+
| 0.8876 | 1.01 | 80000 | 0.8221 |
|
50 |
+
| 0.818 | 1.52 | 120000 | 0.7786 |
|
51 |
+
| 0.7836 | 2.03 | 160000 | 0.7438 |
|
52 |
+
| 0.7672 | 2.54 | 200000 | 0.7165 |
|
53 |
+
| 0.734 | 3.04 | 240000 | 0.6948 |
|
54 |
+
| 0.7079 | 3.55 | 280000 | 0.6749 |
|
55 |
+
| 0.6987 | 4.06 | 320000 | 0.6598 |
|
56 |
+
| 0.6771 | 4.57 | 360000 | 0.6471 |
|
57 |
+
|
58 |
+
|
59 |
+
### Framework versions
|
60 |
+
|
61 |
+
- Transformers 4.12.5
|
62 |
+
- Pytorch 1.10.0+cu113
|
63 |
+
- Datasets 1.15.1
|
64 |
+
- Tokenizers 0.10.3
|