juanpablomesa commited on
Commit
cd14c77
·
1 Parent(s): 83cd9c3

Removed some loggings

Browse files
Files changed (1) hide show
  1. handler.py +8 -8
handler.py CHANGED
@@ -132,31 +132,31 @@ class EndpointHandler:
132
  def embed_frames_with_xclip_processing(self, frames):
133
  # Initialize an empty list to store the frame embeddings
134
 
135
- self.logger.info("Preprocessing frames.")
136
  frame_preprocessed = self.preprocess_frames(frames)
137
 
138
  # Pass the preprocessed frame through the model to get the frame embeddings
139
- self.logger.info("Getting video features.")
140
  frame_embedding = self.model.get_video_features(**frame_preprocessed)
141
 
142
  # Check the shape of the tensor
143
- self.logger.info(f"Shape of the batch_emb tensor: {frame_embedding.shape}")
144
 
145
  # Normalize the embeddings if it's a 2D tensor
146
  if frame_embedding.dim() == 2:
147
- self.logger.info("Normalizing embeddings")
148
  batch_emb = torch.nn.functional.normalize(frame_embedding, p=2, dim=1)
149
  else:
150
- self.logger.info("Skipping normalization due to tensor shape")
151
  batch_emb = frame_embedding.squeeze(0)
152
 
153
- self.logger.info("Converting into numpy array")
154
  batch_emb = batch_emb.cpu().detach().numpy()
155
 
156
- self.logger.info("Converting to list")
157
  batch_emb = batch_emb.tolist()
158
 
159
- self.logger.info("Returning batch_emb list")
160
  return batch_emb
161
 
162
  def process_video(self, video_url, video_metadata):
 
132
  def embed_frames_with_xclip_processing(self, frames):
133
  # Initialize an empty list to store the frame embeddings
134
 
135
+ # self.logger.info("Preprocessing frames.")
136
  frame_preprocessed = self.preprocess_frames(frames)
137
 
138
  # Pass the preprocessed frame through the model to get the frame embeddings
139
+ # self.logger.info("Getting video features.")
140
  frame_embedding = self.model.get_video_features(**frame_preprocessed)
141
 
142
  # Check the shape of the tensor
143
+ # self.logger.info(f"Shape of the batch_emb tensor: {frame_embedding.shape}")
144
 
145
  # Normalize the embeddings if it's a 2D tensor
146
  if frame_embedding.dim() == 2:
147
+ # self.logger.info("Normalizing embeddings")
148
  batch_emb = torch.nn.functional.normalize(frame_embedding, p=2, dim=1)
149
  else:
150
+ # self.logger.info("Skipping normalization due to tensor shape")
151
  batch_emb = frame_embedding.squeeze(0)
152
 
153
+ # self.logger.info("Converting into numpy array")
154
  batch_emb = batch_emb.cpu().detach().numpy()
155
 
156
+ # self.logger.info("Converting to list")
157
  batch_emb = batch_emb.tolist()
158
 
159
+ # self.logger.info("Returning batch_emb list")
160
  return batch_emb
161
 
162
  def process_video(self, video_url, video_metadata):