juanpablomesa's picture
Modified the squeeze() application to embeddings
dae7ab5
raw
history blame
11.3 kB
import io
from typing import Any, Dict, List
import cv2
import tempfile
import numpy as np
import requests
import torch
from PIL import Image
from transformers import AutoTokenizer, XCLIPModel, XCLIPProcessor
from huggingface_hub import logging
from concurrent.futures import ThreadPoolExecutor, as_completed
import timeit
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class EndpointHandler:
def __init__(self, path=""):
# Preload all the elements you are going to need at inference.
# pseudo
# self.model = load_model(path)
model_id = "microsoft/xclip-base-patch16-zero-shot"
# self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.processor = XCLIPProcessor.from_pretrained(path)
self.model = XCLIPModel.from_pretrained(path).to(self.device)
self.tokenizer = AutoTokenizer.from_pretrained(path)
logging.set_verbosity_debug()
self.logger = logging.get_logger(__name__)
# Check if CUDA (GPU support) is available
if torch.cuda.is_available():
self.logger.info("GPU is available for inference.")
self.logger.info(f"Using {torch.cuda.get_device_name(0)}")
else:
self.logger.info("GPU is not available, using CPU for inference.")
def download_video_as_bytes(self, url: str) -> (bytes, dict):
"""
Download a video from a given URL, load it in RAM, and return it as bytes.
Parameters:
- url (str): The URL of the video to download.
Returns:
- bytes or None: The video content as bytes if successful, None otherwise.
- dict or None: The video download headers if succesful, None otherwise.
"""
try:
response = requests.get(url)
response.raise_for_status() # Raise an exception for HTTP errors
return response.content, response.headers
except requests.RequestException as e:
print(f"Error downloading the video: {e}")
return None, None
def extract_evenly_spaced_frames_from_bytes(
self, video_bytes: bytes, num_frames: int = 32
) -> list:
# Write bytes to a temporary file
with tempfile.NamedTemporaryFile(delete=True, suffix=".mp4") as temp_video:
temp_video.write(video_bytes)
temp_video.flush()
# Create a VideoCapture object using the temporary file's name
vidcap = cv2.VideoCapture(temp_video.name)
# Get the total number of frames in the video
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
# Calculate the interval at which frames should be extracted
interval = total_frames // num_frames
frames = []
for i in range(num_frames):
# Set the video position to the next frame to be captured
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i * interval)
# Read the frame
success, image = vidcap.read()
# If successfully read, add the frame to the list
if success:
frames.append(image)
return frames
def preprocess_frames(self, video_frames):
"""
Define a preprocessing function to convert video frames into a format suitable for the model
"""
frames = np.array(video_frames)
# Use the XCLIP Processor to preprocess the frames
inputs = self.processor(
text=None, videos=list(frames), return_tensors="pt", padding=True
).to(self.device)
return inputs
def embed_frames_with_xclip_processing(self, frames):
# Initialize an empty list to store the frame embeddings
self.logger.info("Preprocessing frames.")
frame_preprocessed = self.preprocess_frames(frames)
# Pass the preprocessed frame through the model to get the frame embeddings
self.logger.info("Getting video features.")
frame_embedding = self.model.get_video_features(**frame_preprocessed)
# Stack the list of frame embeddings into a single tensor
# self.logger.info("Stacking embeddings into a single tensor.")
# tensor = torch.stack(frame_embedding)
# detach text emb from graph, move to CPU, and convert to numpy array
# self.logger.info("Squeezing tensor")
# batch_emb = frame_embedding.squeeze(0)
# Check the shape of the tensor
self.logger.info(f"Shape of the batch_emb tensor: {frame_embedding.shape}")
# Normalize the embeddings if it's a 2D tensor
if frame_embedding.dim() == 2:
self.logger.info("Normalizing embeddings")
batch_emb = torch.nn.functional.normalize(frame_embedding, p=2, dim=1)
else:
self.logger.info("Skipping normalization due to tensor shape")
batch_emb = frame_embedding.squeeze(0)
self.logger.info("Converting into numpy array")
batch_emb = batch_emb.cpu().detach().numpy()
self.logger.info("Converting to list")
batch_emb = batch_emb.tolist()
self.logger.info("Returning batch_emb list")
return batch_emb
def process_video(self, video_url, video_metadata):
try:
self.logger.info("Downloading video as bytes.")
video_bytes, video_headers = self.download_video_as_bytes(video_url)
self.logger.info("Extracting frames.")
frames = self.extract_evenly_spaced_frames_from_bytes(
video_bytes, num_frames=32
)
self.logger.info("Embedding frames with Xclip.")
frame_embeddings = self.embed_frames_with_xclip_processing(frames)
video_metadata["url"] = video_url
self.logger.info("Returning embeddings and metadata.")
return frame_embeddings, video_metadata
except Exception as e:
print(e)
return None, None, None
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
"""
Process the input data based on its type and return the embeddings.
This method accepts a dictionary with a 'process_type' key that can be either 'images' or 'text'.
If 'process_type' is 'images', the method expects a list of image URLs under the 'images_urls' key.
It downloads and processes these images, and returns their embeddings.
If 'process_type' is 'text', the method expects a string query under the 'query' key.
It processes this text and returns its embedding.
Parameters:
- data: Dict[str, Any]
A dictionary containing the data to be processed.
It must include a 'process_type' key with value either 'images' or 'text'.
If 'process_type' is 'images', data should also include 'images_urls' key with a list of image URLs.
If 'process_type' is 'text', data should also include 'query' key with a string query.
Returns:
- List[Dict[str, Any]]
A list of dictionaries, each containing the embeddings of the processed data.
If an error occurs during processing, the dictionary will include an 'error' key with the error message.
Raises:
- ValueError: If the 'process_type' key is not present in data, or if the required keys for 'images' or 'text' are not present or are of the wrong type.
"""
if data["process_type"] == "videos":
try:
if "videos_urls" not in data or not isinstance(
data["videos_urls"], list
):
raise ValueError(
"Data must contain 'videos_urls' key with a list of videos urls."
)
batch_size = 10
if "batch_size" in data:
batch_size = int(data["batch_size"])
# Download and process the videos
processed_video_embeddings = []
processed_videos_metadata = []
for i in range(0, len(data["videos_urls"]), batch_size):
videos_urls = data["videos_urls"][i : i + batch_size]
videos_metadata = data["videos_metadata"][i : i + batch_size]
with ThreadPoolExecutor() as executor:
futures = [
executor.submit(self.process_video, url, metadata)
for url, metadata in zip(videos_urls, videos_metadata)
]
for future in as_completed(futures):
frame_embeddings, video_metadata = future.result()
if frame_embeddings is not None:
processed_video_embeddings.append(frame_embeddings)
self.logger.info("Finished appending video embedding")
processed_metadata = {
"text": video_metadata["caption"],
"source": video_metadata["url"],
"source_type": "video_frames",
**video_metadata,
}
processed_videos_metadata.append(processed_metadata)
self.logger.info("Finished appending video metadata")
self.logger.info(f"Finished processing batch {i}")
# Return the embeddings
self.logger.info("Returning embeddings and metadata of all batches")
return {
"embeddings": processed_video_embeddings,
"metadata": processed_videos_metadata,
}
except Exception as e:
print(f"Error during videos processing: {str(e)}")
return {"embeddings": [], "error": str(e)}
elif data["process_type"] == "text":
if "query" not in data or not isinstance(data["query"], str):
raise ValueError("Data must contain 'query' key which is a str.")
query = data["query"]
inputs = self.tokenizer(query, return_tensors="pt").to(self.device)
text_emb = self.model.get_text_features(**inputs)
# detach text emb from graph, move to CPU, and convert to numpy array
text_emb = text_emb.detach().cpu().numpy()
# calculate value to normalize each vector by and normalize them
norm_factor = np.linalg.norm(text_emb, axis=1)
text_emb = text_emb.T / norm_factor
# transpose back to (21, 512)
text_emb = text_emb.T
# Converting tensor to list for JSON response
text_emb_list = text_emb.tolist()
return {"embeddings": text_emb_list}
else:
print(
f"Error during CLIP endpoint processing: data['process_type']: {data['process_type']} neither 'images' or 'text'"
)
return {"embeddings": [], "error": str(e)}
# pseudo
# self.model(input)