augustolf commited on
Commit
7a5a547
1 Parent(s): d8e2df1

Upload my Navizinha PPO LunarLander-v2 trained model

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 242.69 +/- 17.78
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fac606ffca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fac606ffd30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fac606ffdc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fac606ffe50>", "_build": "<function ActorCriticPolicy._build at 0x7fac606ffee0>", "forward": "<function ActorCriticPolicy.forward at 0x7fac606fff70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fac60703040>", "_predict": "<function ActorCriticPolicy._predict at 0x7fac607030d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fac60703160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fac607031f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fac60703280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fac606fc450>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671397244789496351, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNAkbzhCoO6SBWIO4QNjTgXHTY7RpggugAAgD8AAIA/zaSvvPa0NrpOn+q6jzoEtj2MfToS1go6AACAPwAAgD+AXzI+bEgoP/qWiL3UQIS+Z4VFPRhYDr0AAAAAAAAAAKZUij5vLEE/LuFyvRf+Ur5Z4bQ8GgWPOwAAAAAAAAAAQK8aPvnUhz9hnjo+0oNAvq4C7T1lKg29AAAAAAAAAACa22e8KcBHutLrAjmsfRM0HnF1uvpTGrgAAIA/AACAPwCwQDtcQ2u6klgeORmagjPBWw66SpzRsgAAgD8AAIA/WnLGPcO1K7reCHu6jyoVtRukATvKDJI5AACAPwAAgD+aK5C8KWA1ugOZ7Lo1mYe1sewoOnrFCDoAAIA/AACAP7ON4T1csyu6isyCORpMe7PnSQs6fDqYuAAAgD8AAIA/M8T5vPYMY7qXvhy6a/d2toBl2reIWjg5AACAPwAAgD+zjDI9XNtsujB6yzuyHMU3dNkXOuXEPTYAAIA/AACAPw3ftr2uy5O65JM1PU4usTYADyu7BKGkNQAAgD8AAAAAAAUKPdcDErlBDb26xp8CtvtxA7sN4+M5AACAPwAAgD8aH7O99hxTurIEVzkXAWw1QvnEOgPbiLgAAIA/AAAAADNe4bzPREg/jXj2PIqDiL6ePyo6NuSSPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIKlPMQdD4YUCUhpRSlIwBbJRN6AOMAXSUR0CUuKN3np0PdX2UKGgGaAloD0MIeqpDbobpYECUhpRSlGgVTegDaBZHQJS7fwDvE0l1fZQoaAZoCWgPQwiUhETaxmFmQJSGlFKUaBVN6ANoFkdAlMLgxesxPHV9lChoBmgJaA9DCJdxUwNNWGVAlIaUUpRoFU3oA2gWR0CUxCZAIIGAdX2UKGgGaAloD0MI5gRtcniXZECUhpRSlGgVTegDaBZHQJTFqI55qud1fZQoaAZoCWgPQwi4IcZr3qFuQJSGlFKUaBVNngFoFkdAlMYZlnRLK3V9lChoBmgJaA9DCITzqWOVT11AlIaUUpRoFU3oA2gWR0CUyddp7CzkdX2UKGgGaAloD0MInmLVIEz7YUCUhpRSlGgVTegDaBZHQJTK4jJMg2Z1fZQoaAZoCWgPQwiLFqBttcRhQJSGlFKUaBVN6ANoFkdAlNCwtOEdvXV9lChoBmgJaA9DCEImGTkLRV9AlIaUUpRoFU3oA2gWR0CU0aZKFqSHdX2UKGgGaAloD0MIC5qWWBllXkCUhpRSlGgVTegDaBZHQJTThFVktmN1fZQoaAZoCWgPQwhfm42VGItjQJSGlFKUaBVN6ANoFkdAlNQomTkhinV9lChoBmgJaA9DCHzysFDrymVAlIaUUpRoFU3oA2gWR0CU23qveP7vdX2UKGgGaAloD0MIBB4YQPjgX0CUhpRSlGgVTegDaBZHQJThKjFhodx1fZQoaAZoCWgPQwgvqG+Z03NgQJSGlFKUaBVN6ANoFkdAlOa0dBBzFXV9lChoBmgJaA9DCBmO5zMg8WFAlIaUUpRoFU3oA2gWR0CVD7JkXk5qdX2UKGgGaAloD0MILj2a6smYY0CUhpRSlGgVTegDaBZHQJUQjX2/SIB1fZQoaAZoCWgPQwiqJ/OPPvVhQJSGlFKUaBVN6ANoFkdAlRNa7Ackt3V9lChoBmgJaA9DCDtypDMwTmFAlIaUUpRoFU3oA2gWR0CVGihZyMkydX2UKGgGaAloD0MID/J6MKkvZUCUhpRSlGgVTegDaBZHQJUbVmK64Dt1fZQoaAZoCWgPQwgHCydpfkhiQJSGlFKUaBVN6ANoFkdAlRzKvA44qHV9lChoBmgJaA9DCAJIbeLkQGVAlIaUUpRoFU3oA2gWR0CVHTCsOoYOdX2UKGgGaAloD0MICcA/pcp8YkCUhpRSlGgVTegDaBZHQJUgnyd4FA51fZQoaAZoCWgPQwgWTPxRVKFlQJSGlFKUaBVN6ANoFkdAlSGKDCgsb3V9lChoBmgJaA9DCC/CFOXSzmJAlIaUUpRoFU3oA2gWR0CVJsH/95yEdX2UKGgGaAloD0MIlgm/1M+lWUCUhpRSlGgVTegDaBZHQJUnsq4H5ah1fZQoaAZoCWgPQwgrildZWzBkQJSGlFKUaBVN6ANoFkdAlSmHpjc2znV9lChoBmgJaA9DCFPMQdDR/mFAlIaUUpRoFU3oA2gWR0CVKjprk8zRdX2UKGgGaAloD0MIcAfqlEcuX0CUhpRSlGgVTegDaBZHQJUxF2ki2Ul1fZQoaAZoCWgPQwhr09heC/xlQJSGlFKUaBVN6ANoFkdAlTZ01IiC8XV9lChoBmgJaA9DCJ55Oew+BGBAlIaUUpRoFU3oA2gWR0CVO67BfrrxdX2UKGgGaAloD0MI3dH/cq2kYUCUhpRSlGgVTegDaBZHQJVhqyiVSoB1fZQoaAZoCWgPQwi37XvUX7VlQJSGlFKUaBVN6ANoFkdAlWJcLv1DjXV9lChoBmgJaA9DCA72JoZkCWNAlIaUUpRoFU3oA2gWR0CVZMCMPz4DdX2UKGgGaAloD0MIYthhTPqDY0CUhpRSlGgVTegDaBZHQJVq7rv9cbB1fZQoaAZoCWgPQwjK/KNv0ohhQJSGlFKUaBVN6ANoFkdAlWv7lFMIvHV9lChoBmgJaA9DCB0hA3l20VhAlIaUUpRoFU3oA2gWR0CVbU5kbxVidX2UKGgGaAloD0MIRyHJrN5XYkCUhpRSlGgVTegDaBZHQJVttqL0jC51fZQoaAZoCWgPQwhOKETAIXNlQJSGlFKUaBVN6ANoFkdAlXEfszEaVHV9lChoBmgJaA9DCO2b+6vHbmFAlIaUUpRoFU3oA2gWR0CVchC3w1BMdX2UKGgGaAloD0MI3PC76RbiYECUhpRSlGgVTegDaBZHQJV3OHARChN1fZQoaAZoCWgPQwi9iowOSEZcQJSGlFKUaBVN6ANoFkdAlXgilzltCXV9lChoBmgJaA9DCGfuIeF7C2NAlIaUUpRoFU3oA2gWR0CVec7Kq4pddX2UKGgGaAloD0MIeZJ0zeTfYUCUhpRSlGgVTegDaBZHQJV6b6eoUBZ1fZQoaAZoCWgPQwgJVP8gkqpiQJSGlFKUaBVN6ANoFkdAlYEw3cYZVHV9lChoBmgJaA9DCIlBYOXQ9WFAlIaUUpRoFU3oA2gWR0CVhtRpUPxydX2UKGgGaAloD0MI/pqsUY95YUCUhpRSlGgVTegDaBZHQJWMf5pJwsJ1fZQoaAZoCWgPQwiWW1oNCQRhQJSGlFKUaBVN6ANoFkdAlbPW6oVEeHV9lChoBmgJaA9DCOvhy0QRlGRAlIaUUpRoFU3oA2gWR0CVtIycTakAdX2UKGgGaAloD0MIFXR7SeODZECUhpRSlGgVTegDaBZHQJW23x6OYIB1fZQoaAZoCWgPQwg4hZUKqhNkQJSGlFKUaBVN6ANoFkdAlbzsTrVvuXV9lChoBmgJaA9DCCY6yyxCVWNAlIaUUpRoFU3oA2gWR0CVvf9itq59dX2UKGgGaAloD0MITFRvDewHZECUhpRSlGgVTegDaBZHQJW/RU6xPft1fZQoaAZoCWgPQwj7A+W2fT5kQJSGlFKUaBVN6ANoFkdAlb+s5sCT2XV9lChoBmgJaA9DCMO68e5I6mJAlIaUUpRoFU3oA2gWR0CVwvUBGQS0dX2UKGgGaAloD0MIPGcLCC2GYUCUhpRSlGgVTegDaBZHQJXD3HWBjF11fZQoaAZoCWgPQwh/944aE5Y4QJSGlFKUaBVNGAFoFkdAlcS9yksSTXV9lChoBmgJaA9DCHFUbqKWm2NAlIaUUpRoFU3oA2gWR0CVyL71Iy0sdX2UKGgGaAloD0MImzv6Xy7gYECUhpRSlGgVTegDaBZHQJXJoB5ooNN1fZQoaAZoCWgPQwj5hy09miRiQJSGlFKUaBVN6ANoFkdAlcs4lpoK2XV9lChoBmgJaA9DCF6CUx/IbmFAlIaUUpRoFU3oA2gWR0CVy8wqiGnGdX2UKGgGaAloD0MIwOeHEULQZkCUhpRSlGgVTegDaBZHQJXSYGTs6aN1fZQoaAZoCWgPQwjmIr4TM9VkQJSGlFKUaBVN6ANoFkdAldfqS5iEx3V9lChoBmgJaA9DCAPOUrIcR2NAlIaUUpRoFU3oA2gWR0CV3Xwzch1UdX2UKGgGaAloD0MIEY5Z9mSRcECUhpRSlGgVTXYCaBZHQJXpbVRUFSt1fZQoaAZoCWgPQwhrgNJQo6tiQJSGlFKUaBVN6ANoFkdAlgXp0OmR/3V9lChoBmgJaA9DCAwG19zRCGNAlIaUUpRoFU3oA2gWR0CWCL4LThHcdX2UKGgGaAloD0MI1lbsL7uwbUCUhpRSlGgVTcUDaBZHQJYM4KtxMnJ1fZQoaAZoCWgPQwhjl6jemqFiQJSGlFKUaBVN6ANoFkdAlhA4E0SAY3V9lChoBmgJaA9DCJ7TLNDu3V5AlIaUUpRoFU3oA2gWR0CWEXN2C/XYdX2UKGgGaAloD0MIGJRpNLk+XECUhpRSlGgVTegDaBZHQJYR2QGOdXl1fZQoaAZoCWgPQwhlqIqptF5xQJSGlFKUaBVNLQNoFkdAlhN1+qioKnV9lChoBmgJaA9DCMDLDBvlS2VAlIaUUpRoFU3oA2gWR0CWFbjFhodudX2UKGgGaAloD0MIVDVB1H29XECUhpRSlGgVTegDaBZHQJYWk2uPmxN1fZQoaAZoCWgPQwjYfcfwWIthQJSGlFKUaBVN6ANoFkdAlhqLU1AJLXV9lChoBmgJaA9DCNBE2PB06WFAlIaUUpRoFU3oA2gWR0CWG1qtYB/7dX2UKGgGaAloD0MIkkHuIkz7ZUCUhpRSlGgVTegDaBZHQJYdhM10knl1fZQoaAZoCWgPQwi1FmahHQljQJSGlFKUaBVN6ANoFkdAliRpZntfHHV9lChoBmgJaA9DCO9UwD3P9mNAlIaUUpRoFU3oA2gWR0CWKiIZZSvUdX2UKGgGaAloD0MIFFrW/eP2YECUhpRSlGgVTegDaBZHQJYvyU/wAlx1fZQoaAZoCWgPQwg8aHbdW1E4QJSGlFKUaBVNPgFoFkdAljoR2jfvW3V9lChoBmgJaA9DCDmX4qqyJ2BAlIaUUpRoFU3oA2gWR0CWO1RQaaTfdX2UKGgGaAloD0MIcsKE0Sy9bUCUhpRSlGgVTQ4DaBZHQJY8Tb1yvLZ1fZQoaAZoCWgPQwgGTODW3dg8QJSGlFKUaBVNOwFoFkdAlj/3ZTQ3P3V9lChoBmgJaA9DCIWWdf9YdVpAlIaUUpRoFU3oA2gWR0CWVvDZDiOvdX2UKGgGaAloD0MIWg9fJorJYkCUhpRSlGgVTegDaBZHQJZZTiR4hU11fZQoaAZoCWgPQwjHZdzUwCxtQJSGlFKUaBVNpgJoFkdAllx8ZccENnV9lChoBmgJaA9DCK8l5IMe6GVAlIaUUpRoFU3oA2gWR0CWYGz19ORDdX2UKGgGaAloD0MIATEJF/IvYUCUhpRSlGgVTegDaBZHQJZhoM5OrQx1fZQoaAZoCWgPQwgteTwtv8NuQJSGlFKUaBVNxQNoFkdAlmHA176YV3V9lChoBmgJaA9DCA/tYwU/HmZAlIaUUpRoFU3oA2gWR0CWYgO0svqUdX2UKGgGaAloD0MI+mLvxZeiYkCUhpRSlGgVTegDaBZHQJZl+6WgOBl1fZQoaAZoCWgPQwgLnGwDd6BdQJSGlFKUaBVN6ANoFkdAlmb10Lc9GXV9lChoBmgJaA9DCHxl3qprpGJAlIaUUpRoFU3oA2gWR0CWa0IJqqOtdX2UKGgGaAloD0MInprLDYaYY0CUhpRSlGgVTegDaBZHQJZsN8NQTEl1fZQoaAZoCWgPQwgJqdvZV/NgQJSGlFKUaBVN6ANoFkdAloRL3bmEG3V9lChoBmgJaA9DCDCEnPd/QWFAlIaUUpRoFU3oA2gWR0CWkCR0EHMVdX2UKGgGaAloD0MIpBmLpjNBY0CUhpRSlGgVTegDaBZHQJaRgJ9iMHd1fZQoaAZoCWgPQwihL739OedjQJSGlFKUaBVN6ANoFkdAlpJ6y8jAz3V9lChoBmgJaA9DCGN7Leg9aWVAlIaUUpRoFU3oA2gWR0CWllaTfR/mdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
navezinha.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf0b7024361b0ce706be4e1213ce80987ed46cc2c11da8a8f5036140e0d92d6c
3
+ size 147218
navezinha/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
navezinha/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fac606ffca0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fac606ffd30>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fac606ffdc0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fac606ffe50>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fac606ffee0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fac606fff70>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fac60703040>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fac607030d0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fac60703160>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fac607031f0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fac60703280>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fac606fc450>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1671397244789496351,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNAkbzhCoO6SBWIO4QNjTgXHTY7RpggugAAgD8AAIA/zaSvvPa0NrpOn+q6jzoEtj2MfToS1go6AACAPwAAgD+AXzI+bEgoP/qWiL3UQIS+Z4VFPRhYDr0AAAAAAAAAAKZUij5vLEE/LuFyvRf+Ur5Z4bQ8GgWPOwAAAAAAAAAAQK8aPvnUhz9hnjo+0oNAvq4C7T1lKg29AAAAAAAAAACa22e8KcBHutLrAjmsfRM0HnF1uvpTGrgAAIA/AACAPwCwQDtcQ2u6klgeORmagjPBWw66SpzRsgAAgD8AAIA/WnLGPcO1K7reCHu6jyoVtRukATvKDJI5AACAPwAAgD+aK5C8KWA1ugOZ7Lo1mYe1sewoOnrFCDoAAIA/AACAP7ON4T1csyu6isyCORpMe7PnSQs6fDqYuAAAgD8AAIA/M8T5vPYMY7qXvhy6a/d2toBl2reIWjg5AACAPwAAgD+zjDI9XNtsujB6yzuyHMU3dNkXOuXEPTYAAIA/AACAPw3ftr2uy5O65JM1PU4usTYADyu7BKGkNQAAgD8AAAAAAAUKPdcDErlBDb26xp8CtvtxA7sN4+M5AACAPwAAgD8aH7O99hxTurIEVzkXAWw1QvnEOgPbiLgAAIA/AAAAADNe4bzPREg/jXj2PIqDiL6ePyo6NuSSPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIKlPMQdD4YUCUhpRSlIwBbJRN6AOMAXSUR0CUuKN3np0PdX2UKGgGaAloD0MIeqpDbobpYECUhpRSlGgVTegDaBZHQJS7fwDvE0l1fZQoaAZoCWgPQwiUhETaxmFmQJSGlFKUaBVN6ANoFkdAlMLgxesxPHV9lChoBmgJaA9DCJdxUwNNWGVAlIaUUpRoFU3oA2gWR0CUxCZAIIGAdX2UKGgGaAloD0MI5gRtcniXZECUhpRSlGgVTegDaBZHQJTFqI55qud1fZQoaAZoCWgPQwi4IcZr3qFuQJSGlFKUaBVNngFoFkdAlMYZlnRLK3V9lChoBmgJaA9DCITzqWOVT11AlIaUUpRoFU3oA2gWR0CUyddp7CzkdX2UKGgGaAloD0MInmLVIEz7YUCUhpRSlGgVTegDaBZHQJTK4jJMg2Z1fZQoaAZoCWgPQwiLFqBttcRhQJSGlFKUaBVN6ANoFkdAlNCwtOEdvXV9lChoBmgJaA9DCEImGTkLRV9AlIaUUpRoFU3oA2gWR0CU0aZKFqSHdX2UKGgGaAloD0MIC5qWWBllXkCUhpRSlGgVTegDaBZHQJTThFVktmN1fZQoaAZoCWgPQwhfm42VGItjQJSGlFKUaBVN6ANoFkdAlNQomTkhinV9lChoBmgJaA9DCHzysFDrymVAlIaUUpRoFU3oA2gWR0CU23qveP7vdX2UKGgGaAloD0MIBB4YQPjgX0CUhpRSlGgVTegDaBZHQJThKjFhodx1fZQoaAZoCWgPQwgvqG+Z03NgQJSGlFKUaBVN6ANoFkdAlOa0dBBzFXV9lChoBmgJaA9DCBmO5zMg8WFAlIaUUpRoFU3oA2gWR0CVD7JkXk5qdX2UKGgGaAloD0MILj2a6smYY0CUhpRSlGgVTegDaBZHQJUQjX2/SIB1fZQoaAZoCWgPQwiqJ/OPPvVhQJSGlFKUaBVN6ANoFkdAlRNa7Ackt3V9lChoBmgJaA9DCDtypDMwTmFAlIaUUpRoFU3oA2gWR0CVGihZyMkydX2UKGgGaAloD0MID/J6MKkvZUCUhpRSlGgVTegDaBZHQJUbVmK64Dt1fZQoaAZoCWgPQwgHCydpfkhiQJSGlFKUaBVN6ANoFkdAlRzKvA44qHV9lChoBmgJaA9DCAJIbeLkQGVAlIaUUpRoFU3oA2gWR0CVHTCsOoYOdX2UKGgGaAloD0MICcA/pcp8YkCUhpRSlGgVTegDaBZHQJUgnyd4FA51fZQoaAZoCWgPQwgWTPxRVKFlQJSGlFKUaBVN6ANoFkdAlSGKDCgsb3V9lChoBmgJaA9DCC/CFOXSzmJAlIaUUpRoFU3oA2gWR0CVJsH/95yEdX2UKGgGaAloD0MIlgm/1M+lWUCUhpRSlGgVTegDaBZHQJUnsq4H5ah1fZQoaAZoCWgPQwgrildZWzBkQJSGlFKUaBVN6ANoFkdAlSmHpjc2znV9lChoBmgJaA9DCFPMQdDR/mFAlIaUUpRoFU3oA2gWR0CVKjprk8zRdX2UKGgGaAloD0MIcAfqlEcuX0CUhpRSlGgVTegDaBZHQJUxF2ki2Ul1fZQoaAZoCWgPQwhr09heC/xlQJSGlFKUaBVN6ANoFkdAlTZ01IiC8XV9lChoBmgJaA9DCJ55Oew+BGBAlIaUUpRoFU3oA2gWR0CVO67BfrrxdX2UKGgGaAloD0MI3dH/cq2kYUCUhpRSlGgVTegDaBZHQJVhqyiVSoB1fZQoaAZoCWgPQwi37XvUX7VlQJSGlFKUaBVN6ANoFkdAlWJcLv1DjXV9lChoBmgJaA9DCA72JoZkCWNAlIaUUpRoFU3oA2gWR0CVZMCMPz4DdX2UKGgGaAloD0MIYthhTPqDY0CUhpRSlGgVTegDaBZHQJVq7rv9cbB1fZQoaAZoCWgPQwjK/KNv0ohhQJSGlFKUaBVN6ANoFkdAlWv7lFMIvHV9lChoBmgJaA9DCB0hA3l20VhAlIaUUpRoFU3oA2gWR0CVbU5kbxVidX2UKGgGaAloD0MIRyHJrN5XYkCUhpRSlGgVTegDaBZHQJVttqL0jC51fZQoaAZoCWgPQwhOKETAIXNlQJSGlFKUaBVN6ANoFkdAlXEfszEaVHV9lChoBmgJaA9DCO2b+6vHbmFAlIaUUpRoFU3oA2gWR0CVchC3w1BMdX2UKGgGaAloD0MI3PC76RbiYECUhpRSlGgVTegDaBZHQJV3OHARChN1fZQoaAZoCWgPQwi9iowOSEZcQJSGlFKUaBVN6ANoFkdAlXgilzltCXV9lChoBmgJaA9DCGfuIeF7C2NAlIaUUpRoFU3oA2gWR0CVec7Kq4pddX2UKGgGaAloD0MIeZJ0zeTfYUCUhpRSlGgVTegDaBZHQJV6b6eoUBZ1fZQoaAZoCWgPQwgJVP8gkqpiQJSGlFKUaBVN6ANoFkdAlYEw3cYZVHV9lChoBmgJaA9DCIlBYOXQ9WFAlIaUUpRoFU3oA2gWR0CVhtRpUPxydX2UKGgGaAloD0MI/pqsUY95YUCUhpRSlGgVTegDaBZHQJWMf5pJwsJ1fZQoaAZoCWgPQwiWW1oNCQRhQJSGlFKUaBVN6ANoFkdAlbPW6oVEeHV9lChoBmgJaA9DCOvhy0QRlGRAlIaUUpRoFU3oA2gWR0CVtIycTakAdX2UKGgGaAloD0MIFXR7SeODZECUhpRSlGgVTegDaBZHQJW23x6OYIB1fZQoaAZoCWgPQwg4hZUKqhNkQJSGlFKUaBVN6ANoFkdAlbzsTrVvuXV9lChoBmgJaA9DCCY6yyxCVWNAlIaUUpRoFU3oA2gWR0CVvf9itq59dX2UKGgGaAloD0MITFRvDewHZECUhpRSlGgVTegDaBZHQJW/RU6xPft1fZQoaAZoCWgPQwj7A+W2fT5kQJSGlFKUaBVN6ANoFkdAlb+s5sCT2XV9lChoBmgJaA9DCMO68e5I6mJAlIaUUpRoFU3oA2gWR0CVwvUBGQS0dX2UKGgGaAloD0MIPGcLCC2GYUCUhpRSlGgVTegDaBZHQJXD3HWBjF11fZQoaAZoCWgPQwh/944aE5Y4QJSGlFKUaBVNGAFoFkdAlcS9yksSTXV9lChoBmgJaA9DCHFUbqKWm2NAlIaUUpRoFU3oA2gWR0CVyL71Iy0sdX2UKGgGaAloD0MImzv6Xy7gYECUhpRSlGgVTegDaBZHQJXJoB5ooNN1fZQoaAZoCWgPQwj5hy09miRiQJSGlFKUaBVN6ANoFkdAlcs4lpoK2XV9lChoBmgJaA9DCF6CUx/IbmFAlIaUUpRoFU3oA2gWR0CVy8wqiGnGdX2UKGgGaAloD0MIwOeHEULQZkCUhpRSlGgVTegDaBZHQJXSYGTs6aN1fZQoaAZoCWgPQwjmIr4TM9VkQJSGlFKUaBVN6ANoFkdAldfqS5iEx3V9lChoBmgJaA9DCAPOUrIcR2NAlIaUUpRoFU3oA2gWR0CV3Xwzch1UdX2UKGgGaAloD0MIEY5Z9mSRcECUhpRSlGgVTXYCaBZHQJXpbVRUFSt1fZQoaAZoCWgPQwhrgNJQo6tiQJSGlFKUaBVN6ANoFkdAlgXp0OmR/3V9lChoBmgJaA9DCAwG19zRCGNAlIaUUpRoFU3oA2gWR0CWCL4LThHcdX2UKGgGaAloD0MI1lbsL7uwbUCUhpRSlGgVTcUDaBZHQJYM4KtxMnJ1fZQoaAZoCWgPQwhjl6jemqFiQJSGlFKUaBVN6ANoFkdAlhA4E0SAY3V9lChoBmgJaA9DCJ7TLNDu3V5AlIaUUpRoFU3oA2gWR0CWEXN2C/XYdX2UKGgGaAloD0MIGJRpNLk+XECUhpRSlGgVTegDaBZHQJYR2QGOdXl1fZQoaAZoCWgPQwhlqIqptF5xQJSGlFKUaBVNLQNoFkdAlhN1+qioKnV9lChoBmgJaA9DCMDLDBvlS2VAlIaUUpRoFU3oA2gWR0CWFbjFhodudX2UKGgGaAloD0MIVDVB1H29XECUhpRSlGgVTegDaBZHQJYWk2uPmxN1fZQoaAZoCWgPQwjYfcfwWIthQJSGlFKUaBVN6ANoFkdAlhqLU1AJLXV9lChoBmgJaA9DCNBE2PB06WFAlIaUUpRoFU3oA2gWR0CWG1qtYB/7dX2UKGgGaAloD0MIkkHuIkz7ZUCUhpRSlGgVTegDaBZHQJYdhM10knl1fZQoaAZoCWgPQwi1FmahHQljQJSGlFKUaBVN6ANoFkdAliRpZntfHHV9lChoBmgJaA9DCO9UwD3P9mNAlIaUUpRoFU3oA2gWR0CWKiIZZSvUdX2UKGgGaAloD0MIFFrW/eP2YECUhpRSlGgVTegDaBZHQJYvyU/wAlx1fZQoaAZoCWgPQwg8aHbdW1E4QJSGlFKUaBVNPgFoFkdAljoR2jfvW3V9lChoBmgJaA9DCDmX4qqyJ2BAlIaUUpRoFU3oA2gWR0CWO1RQaaTfdX2UKGgGaAloD0MIcsKE0Sy9bUCUhpRSlGgVTQ4DaBZHQJY8Tb1yvLZ1fZQoaAZoCWgPQwgGTODW3dg8QJSGlFKUaBVNOwFoFkdAlj/3ZTQ3P3V9lChoBmgJaA9DCIWWdf9YdVpAlIaUUpRoFU3oA2gWR0CWVvDZDiOvdX2UKGgGaAloD0MIWg9fJorJYkCUhpRSlGgVTegDaBZHQJZZTiR4hU11fZQoaAZoCWgPQwjHZdzUwCxtQJSGlFKUaBVNpgJoFkdAllx8ZccENnV9lChoBmgJaA9DCK8l5IMe6GVAlIaUUpRoFU3oA2gWR0CWYGz19ORDdX2UKGgGaAloD0MIATEJF/IvYUCUhpRSlGgVTegDaBZHQJZhoM5OrQx1fZQoaAZoCWgPQwgteTwtv8NuQJSGlFKUaBVNxQNoFkdAlmHA176YV3V9lChoBmgJaA9DCA/tYwU/HmZAlIaUUpRoFU3oA2gWR0CWYgO0svqUdX2UKGgGaAloD0MI+mLvxZeiYkCUhpRSlGgVTegDaBZHQJZl+6WgOBl1fZQoaAZoCWgPQwgLnGwDd6BdQJSGlFKUaBVN6ANoFkdAlmb10Lc9GXV9lChoBmgJaA9DCHxl3qprpGJAlIaUUpRoFU3oA2gWR0CWa0IJqqOtdX2UKGgGaAloD0MInprLDYaYY0CUhpRSlGgVTegDaBZHQJZsN8NQTEl1fZQoaAZoCWgPQwgJqdvZV/NgQJSGlFKUaBVN6ANoFkdAloRL3bmEG3V9lChoBmgJaA9DCDCEnPd/QWFAlIaUUpRoFU3oA2gWR0CWkCR0EHMVdX2UKGgGaAloD0MIpBmLpjNBY0CUhpRSlGgVTegDaBZHQJaRgJ9iMHd1fZQoaAZoCWgPQwihL739OedjQJSGlFKUaBVN6ANoFkdAlpJ6y8jAz3V9lChoBmgJaA9DCGN7Leg9aWVAlIaUUpRoFU3oA2gWR0CWllaTfR/mdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
navezinha/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a455cc74963b963754c44480e50e57d6f49966c0460b41207e40848e6ff1a609
3
+ size 87929
navezinha/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4d27892d39c569fb80c3c29ce491a99190c8e68be4be04cb1f52d9c919de891
3
+ size 43201
navezinha/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
navezinha/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (246 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 242.6866399943825, "std_reward": 17.78414569362797, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-18T22:00:06.120484"}