File size: 3,766 Bytes
1af991d
 
40f7709
 
 
 
1af991d
40f7709
 
 
 
 
6b038b2
40f7709
6b038b2
40f7709
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db5169f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40f7709
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
license: cc-by-nc-sa-4.0
language:
- en
tags:
- audio
---
# 

**Auffusion** is a latent diffusion model (LDM) for text-to-audio (TTA) generation. **Auffusion** can generate realistic audios including human sounds, animal sounds, natural and artificial sounds and sound effects from textual prompts. We introduce Auffusion, a TTA system adapting T2I model frameworks to TTA task, by effectively leveraging their inherent generative strengths and precise cross-modal alignment. Our objective and subjective evaluations demonstrate that Auffusion surpasses previous TTA approaches using limited data and computational resource. We release our model, inference code, and pre-trained checkpoints for the research community.

📣 We are releasing **Auffusion-Full-no-adapter** which was pre-trained on all datasets described in paper and created for easy use of audio manipulation.

📣 We are releasing **Auffusion-Full** which was pre-trained on all datasets described in paper.

📣 We are releasing **Auffusion** which was pre-trained on **AudioCaps**.

## Auffusion Model Family

| Model Name                 | Model Path                                                                                                              |
|----------------------------|------------------------------------------------------------------------------------------------------------------------ |
| Auffusion                  | [https://huggingface.co/auffusion/auffusion](https://huggingface.co/auffusion/auffusion)                                |
| Auffusion-Full             | [https://huggingface.co/auffusion/auffusion-full](https://huggingface.co/auffusion/auffusion-full)                      |
| Auffusion-Full-no-adapter  | [https://huggingface.co/auffusion/auffusion-full-no-adapter](https://huggingface.co/auffusion/auffusion-full-no-adapter)|


## Code

Our code is released here: [https://github.com/happylittlecat2333/Auffusion](https://github.com/happylittlecat2333/Auffusion)

We uploaded several **Auffusion** generated samples here: [https://auffusion.github.io](https://auffusion.github.io)

Please follow the instructions in the repository for installation, usage and experiments.


## Quickstart Guide

First, git clone the repository and install the requirements:

```bash
git clone https://github.com/happylittlecat2333/Auffusion/
cd Auffusion
pip install -r requirements.txt
```

Download the **Auffusion** model and generate audio from a text prompt:

```python
import IPython, torch
import soundfile as sf
from auffusion_pipeline import AuffusionPipeline

pipeline = AuffusionPipeline.from_pretrained("auffusion/auffusion")

prompt = "Birds singing sweetly in a blooming garden"
output = pipeline(prompt=prompt)
audio = output.audios[0]
sf.write(f"{prompt}.wav", audio, samplerate=16000)
IPython.display.Audio(data=audio, rate=16000)
```

The auffusion model will be automatically downloaded from huggingface and saved in cache. Subsequent runs will load the model directly from cache.

The `generate` function uses 100 steps and 7.5 guidance_scale by default to sample from the latent diffusion model. You can also vary parameters for different results.

```python
prompt = "Rolling thunder with lightning strikes"
output = pipeline(prompt=prompt, num_inference_steps=100, guidance_scale=7.5)
audio = output.audios[0]
IPython.display.Audio(data=audio, rate=16000)
```


##  Citation

Please consider citing the following article if you found our work useful:

```bibtex
@article{xue2024auffusion,
  title={Auffusion: Leveraging the Power of Diffusion and Large Language Models for Text-to-Audio Generation}, 
  author={Jinlong Xue and Yayue Deng and Yingming Gao and Ya Li},
  journal={arXiv preprint arXiv:2401.01044},
  year={2024}
}
```
```