frankenjoe
commited on
Commit
•
0dad9f3
1
Parent(s):
3f7a513
Update README.md
Browse files
README.md
CHANGED
@@ -9,4 +9,116 @@ datasets:
|
|
9 |
tags:
|
10 |
- speech
|
11 |
license: cc-by-nc-sa-4.0
|
12 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
tags:
|
10 |
- speech
|
11 |
license: cc-by-nc-sa-4.0
|
12 |
+
---
|
13 |
+
|
14 |
+
# Model for Dimensional Speech Emotion Recognition based on Wav2vec 2.0
|
15 |
+
|
16 |
+
The model expects a raw audio signal as input and outputs predictions for arousal, dominance and valence in a range of approximately 0...1. In addition, it also provides the pooled states of the last transformer layer. The model was created by fine-tuning [
|
17 |
+
Wav2Vec2-Large-Robust](https://huggingface.co/facebook/wav2vec2-large-robust) on [MSP-Podcast](https://ecs.utdallas.edu/research/researchlabs/msp-lab/MSP-Podcast.html) (v1.7). The model was pruned from 24 to 12 transformer layers before fine-tuning. An [ONNX](https://onnx.ai/") export of the model is available from [doi:10.5281/zenodo.6221127](https://zenodo.org/record/6221127). Further details are given in the associated [paper](https://arxiv.org/abs/2203.07378).
|
18 |
+
|
19 |
+
# How to
|
20 |
+
|
21 |
+
```python
|
22 |
+
import numpy as np
|
23 |
+
import torch
|
24 |
+
import torch.nn as nn
|
25 |
+
from transformers import Wav2Vec2Processor
|
26 |
+
from transformers.models.wav2vec2.modeling_wav2vec2 import (
|
27 |
+
Wav2Vec2Model,
|
28 |
+
Wav2Vec2PreTrainedModel,
|
29 |
+
)
|
30 |
+
|
31 |
+
|
32 |
+
class RegressionHead(nn.Module):
|
33 |
+
r"""Classification head."""
|
34 |
+
|
35 |
+
def __init__(self, config):
|
36 |
+
|
37 |
+
super().__init__()
|
38 |
+
|
39 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
40 |
+
self.dropout = nn.Dropout(config.final_dropout)
|
41 |
+
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
|
42 |
+
|
43 |
+
def forward(self, features, **kwargs):
|
44 |
+
|
45 |
+
x = features
|
46 |
+
x = self.dropout(x)
|
47 |
+
x = self.dense(x)
|
48 |
+
x = torch.tanh(x)
|
49 |
+
x = self.dropout(x)
|
50 |
+
x = self.out_proj(x)
|
51 |
+
|
52 |
+
return x
|
53 |
+
|
54 |
+
|
55 |
+
class EmotionModel(Wav2Vec2PreTrainedModel):
|
56 |
+
r"""Speech emotion classifier."""
|
57 |
+
|
58 |
+
def __init__(self, config):
|
59 |
+
|
60 |
+
super().__init__(config)
|
61 |
+
|
62 |
+
self.config = config
|
63 |
+
self.wav2vec2 = Wav2Vec2Model(config)
|
64 |
+
self.classifier = RegressionHead(config)
|
65 |
+
self.init_weights()
|
66 |
+
|
67 |
+
def forward(
|
68 |
+
self,
|
69 |
+
input_values,
|
70 |
+
):
|
71 |
+
|
72 |
+
outputs = self.wav2vec2(input_values)
|
73 |
+
hidden_states = outputs[0]
|
74 |
+
hidden_states = torch.mean(hidden_states, dim=1)
|
75 |
+
logits = self.classifier(hidden_states)
|
76 |
+
|
77 |
+
return hidden_states, logits
|
78 |
+
|
79 |
+
|
80 |
+
|
81 |
+
# load model from hub
|
82 |
+
device = 'cpu'
|
83 |
+
model_name = 'audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim'
|
84 |
+
processor = Wav2Vec2Processor.from_pretrained(model_name)
|
85 |
+
model = EmotionModel.from_pretrained(model_name)
|
86 |
+
|
87 |
+
# dummy signal
|
88 |
+
sampling_rate = 16000
|
89 |
+
signal = np.zeros((1, sampling_rate), dtype=np.float32)
|
90 |
+
|
91 |
+
|
92 |
+
def process_func(
|
93 |
+
x: np.ndarray,
|
94 |
+
sampling_rate: int,
|
95 |
+
embeddings: bool = False,
|
96 |
+
) -> np.ndarray:
|
97 |
+
r"""Predict emotions or extract embeddings from raw audio signal."""
|
98 |
+
|
99 |
+
# run through processor to normalize signal
|
100 |
+
# always returns a batch, so we just get the first entry
|
101 |
+
# then we put it on the device
|
102 |
+
y = processor(x, sampling_rate=sampling_rate)
|
103 |
+
y = y['input_values'][0]
|
104 |
+
y = torch.from_numpy(y).to(device)
|
105 |
+
|
106 |
+
# run through model
|
107 |
+
with torch.no_grad():
|
108 |
+
y = model(y)[0 if embeddings else 1]
|
109 |
+
|
110 |
+
# convert to numpy
|
111 |
+
y = y.detach().cpu().numpy()
|
112 |
+
|
113 |
+
return y
|
114 |
+
|
115 |
+
|
116 |
+
process_func(signal, sampling_rate)
|
117 |
+
# Arousal dominance valence
|
118 |
+
# [[0.5460759 0.6062269 0.4043165]]
|
119 |
+
|
120 |
+
process_func(signal, sampling_rate, embeddings=True)
|
121 |
+
# Pooled hidden states of last transformer layer
|
122 |
+
# [[-0.00752167 0.0065819 -0.00746339 ... 0.00663631 0.00848747
|
123 |
+
# 0.00599209]]
|
124 |
+
```
|