Ubuntu
commited on
Commit
·
6e2d47c
1
Parent(s):
2e9c13e
Changed num_workers to 8 instead of 16
Browse files
resnet_execute.py
CHANGED
@@ -13,6 +13,7 @@ from torchvision.utils import make_grid
|
|
13 |
import albumentations as A
|
14 |
from albumentations.pytorch import ToTensorV2
|
15 |
import numpy as np
|
|
|
16 |
|
17 |
# Define transformations
|
18 |
train_transform = A.Compose([
|
@@ -32,16 +33,18 @@ test_transform = A.Compose([
|
|
32 |
|
33 |
# Train dataset and loader
|
34 |
trainset = datasets.ImageFolder(root='/mnt/imagenet/ILSVRC/Data/CLS-LOC/train', transform=lambda img: train_transform(image=np.array(img))['image'])
|
35 |
-
trainloader = DataLoader(trainset, batch_size=128, shuffle=True, num_workers=
|
36 |
|
37 |
testset = datasets.ImageFolder(root='/mnt/imagenet/ILSVRC/Data/CLS-LOC/val', transform=lambda img: test_transform(image=np.array(img))['image'])
|
38 |
-
testloader = DataLoader(testset, batch_size=500, shuffle=False, num_workers=
|
39 |
|
40 |
# Initialize model, loss function, and optimizer
|
41 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
42 |
model = ResNet50()
|
43 |
model = torch.nn.DataParallel(model)
|
44 |
model = model.to(device)
|
|
|
45 |
|
46 |
criterion = nn.CrossEntropyLoss()
|
47 |
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4)
|
@@ -49,7 +52,7 @@ optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9, weight_decay=5e
|
|
49 |
# Training function
|
50 |
from torch.amp import autocast
|
51 |
|
52 |
-
def train(model, device, train_loader, optimizer, criterion, epoch, accumulation_steps=
|
53 |
model.train()
|
54 |
running_loss = 0.0
|
55 |
correct1 = 0
|
|
|
13 |
import albumentations as A
|
14 |
from albumentations.pytorch import ToTensorV2
|
15 |
import numpy as np
|
16 |
+
from torchsummary import summary
|
17 |
|
18 |
# Define transformations
|
19 |
train_transform = A.Compose([
|
|
|
33 |
|
34 |
# Train dataset and loader
|
35 |
trainset = datasets.ImageFolder(root='/mnt/imagenet/ILSVRC/Data/CLS-LOC/train', transform=lambda img: train_transform(image=np.array(img))['image'])
|
36 |
+
trainloader = DataLoader(trainset, batch_size=128, shuffle=True, num_workers=8, pin_memory=True)
|
37 |
|
38 |
testset = datasets.ImageFolder(root='/mnt/imagenet/ILSVRC/Data/CLS-LOC/val', transform=lambda img: test_transform(image=np.array(img))['image'])
|
39 |
+
testloader = DataLoader(testset, batch_size=500, shuffle=False, num_workers=8, pin_memory=True)
|
40 |
|
41 |
# Initialize model, loss function, and optimizer
|
42 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
43 |
+
print( device )
|
44 |
model = ResNet50()
|
45 |
model = torch.nn.DataParallel(model)
|
46 |
model = model.to(device)
|
47 |
+
summary(model, input_size=(3, 224, 224))
|
48 |
|
49 |
criterion = nn.CrossEntropyLoss()
|
50 |
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4)
|
|
|
52 |
# Training function
|
53 |
from torch.amp import autocast
|
54 |
|
55 |
+
def train(model, device, train_loader, optimizer, criterion, epoch, accumulation_steps=4):
|
56 |
model.train()
|
57 |
running_loss = 0.0
|
58 |
correct1 = 0
|
tmppl87qjev/_remote_module_non_scriptable.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.distributed.rpc as rpc
|
5 |
+
from torch import Tensor
|
6 |
+
from torch._jit_internal import Future
|
7 |
+
from torch.distributed.rpc import RRef
|
8 |
+
from typing import Tuple # pyre-ignore: unused import
|
9 |
+
|
10 |
+
|
11 |
+
module_interface_cls = None
|
12 |
+
|
13 |
+
|
14 |
+
def forward_async(self, *args, **kwargs):
|
15 |
+
args = (self.module_rref, self.device, self.is_device_map_set, *args)
|
16 |
+
kwargs = {**kwargs}
|
17 |
+
return rpc.rpc_async(
|
18 |
+
self.module_rref.owner(),
|
19 |
+
_remote_forward,
|
20 |
+
args,
|
21 |
+
kwargs,
|
22 |
+
)
|
23 |
+
|
24 |
+
|
25 |
+
def forward(self, *args, **kwargs):
|
26 |
+
args = (self.module_rref, self.device, self.is_device_map_set, *args)
|
27 |
+
kwargs = {**kwargs}
|
28 |
+
ret_fut = rpc.rpc_async(
|
29 |
+
self.module_rref.owner(),
|
30 |
+
_remote_forward,
|
31 |
+
args,
|
32 |
+
kwargs,
|
33 |
+
)
|
34 |
+
return ret_fut.wait()
|
35 |
+
|
36 |
+
|
37 |
+
_generated_methods = [
|
38 |
+
forward_async,
|
39 |
+
forward,
|
40 |
+
]
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
def _remote_forward(
|
46 |
+
module_rref: RRef[module_interface_cls], device: str, is_device_map_set: bool, *args, **kwargs):
|
47 |
+
module = module_rref.local_value()
|
48 |
+
device = torch.device(device)
|
49 |
+
|
50 |
+
if device.type != "cuda":
|
51 |
+
return module.forward(*args, **kwargs)
|
52 |
+
|
53 |
+
# If the module is on a cuda device,
|
54 |
+
# move any CPU tensor in args or kwargs to the same cuda device.
|
55 |
+
# Since torch script does not support generator expression,
|
56 |
+
# have to use concatenation instead of
|
57 |
+
# ``tuple(i.to(device) if isinstance(i, Tensor) else i for i in *args)``.
|
58 |
+
args = (*args,)
|
59 |
+
out_args: Tuple[()] = ()
|
60 |
+
for arg in args:
|
61 |
+
arg = (arg.to(device),) if isinstance(arg, Tensor) else (arg,)
|
62 |
+
out_args = out_args + arg
|
63 |
+
|
64 |
+
kwargs = {**kwargs}
|
65 |
+
for k, v in kwargs.items():
|
66 |
+
if isinstance(v, Tensor):
|
67 |
+
kwargs[k] = kwargs[k].to(device)
|
68 |
+
|
69 |
+
if is_device_map_set:
|
70 |
+
return module.forward(*out_args, **kwargs)
|
71 |
+
|
72 |
+
# If the device map is empty, then only CPU tensors are allowed to send over wire,
|
73 |
+
# so have to move any GPU tensor to CPU in the output.
|
74 |
+
# Since torch script does not support generator expression,
|
75 |
+
# have to use concatenation instead of
|
76 |
+
# ``tuple(i.cpu() if isinstance(i, Tensor) else i for i in module.forward(*out_args, **kwargs))``.
|
77 |
+
ret: Tuple[()] = ()
|
78 |
+
for i in module.forward(*out_args, **kwargs):
|
79 |
+
i = (i.cpu(),) if isinstance(i, Tensor) else (i,)
|
80 |
+
ret = ret + i
|
81 |
+
return ret
|