ubuntu commited on
Commit
373be07
·
1 Parent(s): 6dc829b

Added one cycle lr and lr_finder and reduced jitter

Browse files
Files changed (4) hide show
  1. data_utils.py +2 -2
  2. lr_finder.py +48 -0
  3. main.py +14 -3
  4. utils.py +56 -0
data_utils.py CHANGED
@@ -8,7 +8,7 @@ def get_train_transform():
8
  return A.Compose([
9
  A.RandomResizedCrop(height=224, width=224, scale=(0.08, 1.0), ratio=(3/4, 4/3), p=1.0),
10
  A.HorizontalFlip(p=0.5),
11
- A.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1, p=0.8),
12
  A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
13
  ToTensorV2()
14
  ])
@@ -28,4 +28,4 @@ def get_data_loaders(train_transform, test_transform, batch_size_train=128, batc
28
  testset = datasets.ImageFolder(root='/mnt/imagenet/ILSVRC/Data/CLS-LOC/val', transform=lambda img: test_transform(image=np.array(img))['image'])
29
  testloader = DataLoader(testset, batch_size=batch_size_test, shuffle=False, num_workers=8, pin_memory=True)
30
 
31
- return trainloader, testloader
 
8
  return A.Compose([
9
  A.RandomResizedCrop(height=224, width=224, scale=(0.08, 1.0), ratio=(3/4, 4/3), p=1.0),
10
  A.HorizontalFlip(p=0.5),
11
+ A.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.05, p=0.8),
12
  A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
13
  ToTensorV2()
14
  ])
 
28
  testset = datasets.ImageFolder(root='/mnt/imagenet/ILSVRC/Data/CLS-LOC/val', transform=lambda img: test_transform(image=np.array(img))['image'])
29
  testloader = DataLoader(testset, batch_size=batch_size_test, shuffle=False, num_workers=8, pin_memory=True)
30
 
31
+ return trainloader, testloader
lr_finder.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.optim as optim
3
+ import torch.nn as nn
4
+ from torch.optim.lr_scheduler import OneCycleLR
5
+ from torchvision import models, datasets, transforms
6
+ from torch.utils.data import DataLoader
7
+
8
+ # Load pretrained ResNet-50
9
+ model = models.resnet50(pretrained=True)
10
+ model.fc = nn.Linear(model.fc.in_features, num_classes) # Adjust for your dataset
11
+ model = model.to('cuda')
12
+
13
+ # Define optimizer and loss function
14
+ optimizer = optim.SGD(model.parameters(), lr=1e-3, momentum=0.9, weight_decay=1e-4)
15
+ criterion = nn.CrossEntropyLoss()
16
+
17
+ # Prepare dataset and DataLoader
18
+ transform = transforms.Compose([
19
+ transforms.Resize(256),
20
+ transforms.CenterCrop(224),
21
+ transforms.ToTensor(),
22
+ transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
23
+ ])
24
+ train_dataset = datasets.ImageFolder(root='/path/to/train', transform=transform)
25
+ train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True, num_workers=4)
26
+
27
+ # Set One-Cycle LR scheduler
28
+ epochs = 10
29
+ steps_per_epoch = len(train_loader)
30
+ lr_max = 1e-3 # Adjust based on LR Finder or task size
31
+
32
+ scheduler = OneCycleLR(optimizer, max_lr=lr_max, epochs=epochs, steps_per_epoch=steps_per_epoch)
33
+
34
+ # Training loop
35
+ for epoch in range(epochs):
36
+ model.train()
37
+ for inputs, labels in train_loader:
38
+ inputs, labels = inputs.to('cuda'), labels.to('cuda')
39
+
40
+ optimizer.zero_grad()
41
+ outputs = model(inputs)
42
+ loss = criterion(outputs, labels)
43
+ loss.backward()
44
+ optimizer.step()
45
+ scheduler.step() # Update learning rate using One-Cycle policy
46
+
47
+ print(f"Epoch {epoch+1}/{epochs} completed.")
48
+
main.py CHANGED
@@ -6,6 +6,7 @@ from data_utils import get_train_transform, get_test_transform, get_data_loaders
6
  from train_test import train, test
7
  from utils import save_checkpoint, load_checkpoint, plot_training_curves, plot_misclassified_samples
8
  from torchsummary import summary
 
9
 
10
  def main():
11
  # Initialize model, loss function, and optimizer
@@ -15,7 +16,8 @@ def main():
15
  model = model.to(device)
16
  summary(model, input_size=(3, 224, 224))
17
  criterion = nn.CrossEntropyLoss()
18
- optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4)
 
19
 
20
  # Load data
21
  train_transform = get_train_transform()
@@ -34,8 +36,16 @@ def main():
34
  results = []
35
  learning_rates = []
36
 
 
 
 
 
 
 
 
 
37
  # Training loop
38
- for epoch in range(start_epoch, 26):
39
  train_accuracy1, train_accuracy5, train_loss = train(model, device, trainloader, optimizer, criterion, epoch)
40
  test_accuracy1, test_accuracy5, test_loss, misclassified_images, misclassified_labels, misclassified_preds = test(model, device, testloader, criterion)
41
  print(f'Epoch {epoch} | Train Top-1 Acc: {train_accuracy1:.2f} | Test Top-1 Acc: {test_accuracy1:.2f}')
@@ -43,7 +53,8 @@ def main():
43
  # Append results for this epoch
44
  results.append((epoch, train_accuracy1, train_accuracy5, test_accuracy1, test_accuracy5, train_loss, test_loss))
45
  learning_rates.append(optimizer.param_groups[0]['lr'])
46
-
 
47
  # Save checkpoint
48
  save_checkpoint(model, optimizer, epoch, test_loss, checkpoint_path)
49
 
 
6
  from train_test import train, test
7
  from utils import save_checkpoint, load_checkpoint, plot_training_curves, plot_misclassified_samples
8
  from torchsummary import summary
9
+ from torch.optim.lr_scheduler import OneCycleLR
10
 
11
  def main():
12
  # Initialize model, loss function, and optimizer
 
16
  model = model.to(device)
17
  summary(model, input_size=(3, 224, 224))
18
  criterion = nn.CrossEntropyLoss()
19
+ optimizer = optim.SGD(model.parameters(), lr=1e-3, momentum=0.9, weight_decay=1e-4)
20
+
21
 
22
  # Load data
23
  train_transform = get_train_transform()
 
36
  results = []
37
  learning_rates = []
38
 
39
+ # Set One-Cycle LR scheduler
40
+ num_epochs = 10
41
+ steps_per_epoch = len(trainloader)
42
+ lr_max = 1e-2
43
+
44
+ scheduler = OneCycleLR(optimizer, max_lr=lr_max, epochs=num_epochs, steps_per_epoch=steps_per_epoch)
45
+
46
+
47
  # Training loop
48
+ for epoch in range(start_epoch+1, start_epoch + num_epochs):
49
  train_accuracy1, train_accuracy5, train_loss = train(model, device, trainloader, optimizer, criterion, epoch)
50
  test_accuracy1, test_accuracy5, test_loss, misclassified_images, misclassified_labels, misclassified_preds = test(model, device, testloader, criterion)
51
  print(f'Epoch {epoch} | Train Top-1 Acc: {train_accuracy1:.2f} | Test Top-1 Acc: {test_accuracy1:.2f}')
 
53
  # Append results for this epoch
54
  results.append((epoch, train_accuracy1, train_accuracy5, test_accuracy1, test_accuracy5, train_loss, test_loss))
55
  learning_rates.append(optimizer.param_groups[0]['lr'])
56
+
57
+ scheduler.step()
58
  # Save checkpoint
59
  save_checkpoint(model, optimizer, epoch, test_loss, checkpoint_path)
60
 
utils.py CHANGED
@@ -65,3 +65,59 @@ def plot_misclassified_samples(misclassified_images, misclassified_labels, miscl
65
  plt.title("Misclassified Samples")
66
  plt.axis('off')
67
  plt.show()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65
  plt.title("Misclassified Samples")
66
  plt.axis('off')
67
  plt.show()
68
+
69
+ def find_lr(model, criterion, optimizer, train_loader, num_epochs=1, start_lr=1e-7, end_lr=10, lr_multiplier=1.1):
70
+ """
71
+ Find the optimal learning rate using LR Finder.
72
+
73
+ Args:
74
+ - model: The model to train
75
+ - criterion: Loss function (e.g., CrossEntropyLoss)
76
+ - optimizer: Optimizer (e.g., SGD)
77
+ - train_loader: DataLoader for training data
78
+ - num_epochs: Number of epochs to run the LR Finder (typically 1-2)
79
+ - start_lr: Starting learning rate for the experiment
80
+ - end_lr: Maximum learning rate (used for scaling)
81
+ - lr_multiplier: Factor by which the learning rate is increased every batch
82
+
83
+ Returns:
84
+ - A plot of loss vs learning rate
85
+ """
86
+ lrs = []
87
+ losses = []
88
+ avg_loss = 0.0
89
+ batch_count = 0
90
+
91
+ lr = start_lr
92
+ for epoch in range(num_epochs):
93
+ model.train()
94
+ for inputs, labels in train_loader:
95
+ inputs, labels = inputs.to(device), labels.to(device)
96
+ optimizer.param_groups[0]['lr'] = lr # Set the learning rate
97
+
98
+ # Forward pass
99
+ optimizer.zero_grad()
100
+ outputs = model(inputs)
101
+ loss = criterion(outputs, labels)
102
+ loss.backward()
103
+ optimizer.step()
104
+
105
+ avg_loss += loss.item()
106
+ batch_count += 1
107
+ lrs.append(lr)
108
+ losses.append(loss.item())
109
+
110
+ # Increase the learning rate for next batch
111
+ lr *= lr_multiplier
112
+
113
+ avg_loss /= batch_count
114
+ print(f"Epoch [{epoch+1}/{num_epochs}], Avg Loss: {avg_loss:.4f}")
115
+
116
+ # Plot the loss vs learning rate
117
+ plt.plot(lrs, losses)
118
+ plt.xscale('log')
119
+ plt.xlabel('Learning Rate')
120
+ plt.ylabel('Loss')
121
+ plt.title('Learning Rate Finder')
122
+ plt.show()
123
+