ResNet50_replicate / lr_finder.py
ubuntu
Added one cycle lr and lr_finder and reduced jitter
373be07
import torch
import torch.optim as optim
import torch.nn as nn
from torch.optim.lr_scheduler import OneCycleLR
from torchvision import models, datasets, transforms
from torch.utils.data import DataLoader
# Load pretrained ResNet-50
model = models.resnet50(pretrained=True)
model.fc = nn.Linear(model.fc.in_features, num_classes) # Adjust for your dataset
model = model.to('cuda')
# Define optimizer and loss function
optimizer = optim.SGD(model.parameters(), lr=1e-3, momentum=0.9, weight_decay=1e-4)
criterion = nn.CrossEntropyLoss()
# Prepare dataset and DataLoader
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
train_dataset = datasets.ImageFolder(root='/path/to/train', transform=transform)
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True, num_workers=4)
# Set One-Cycle LR scheduler
epochs = 10
steps_per_epoch = len(train_loader)
lr_max = 1e-3 # Adjust based on LR Finder or task size
scheduler = OneCycleLR(optimizer, max_lr=lr_max, epochs=epochs, steps_per_epoch=steps_per_epoch)
# Training loop
for epoch in range(epochs):
model.train()
for inputs, labels in train_loader:
inputs, labels = inputs.to('cuda'), labels.to('cuda')
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
scheduler.step() # Update learning rate using One-Cycle policy
print(f"Epoch {epoch+1}/{epochs} completed.")