File size: 23,152 Bytes
70025f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
---
language:
- en
- fr
- de
- es
- it
- pt
- ja
- ko
- zh
- ar
license: cc-by-nc-4.0
library_name: transformers
extra_gated_prompt: "By submitting this form, you agree to the [License Agreement](https://cohere.com/c4ai-cc-by-nc-license)  and acknowledge that the information you provide will be collected, used, and shared in accordance with Cohere’s [Privacy Policy]( https://cohere.com/privacy)." 
extra_gated_fields:
 Name: text
 Affiliation: text
 Country:
    type: select
    options: 
      - Aruba
      - Afghanistan
      - Angola
      - Anguilla
      - Åland Islands
      - Albania
      - Andorra
      - United Arab Emirates
      - Argentina
      - Armenia
      - American Samoa
      - Antarctica
      - French Southern Territories
      - Antigua and Barbuda
      - Australia
      - Austria
      - Azerbaijan
      - Burundi
      - Belgium
      - Benin
      - Bonaire Sint Eustatius and Saba
      - Burkina Faso
      - Bangladesh
      - Bulgaria
      - Bahrain
      - Bahamas
      - Bosnia and Herzegovina
      - Saint Barthélemy
      - Belarus
      - Belize
      - Bermuda
      - Plurinational State of Bolivia
      - Brazil
      - Barbados
      - Brunei-Darussalam
      - Bhutan
      - Bouvet-Island
      - Botswana
      - Central African Republic
      - Canada
      - Cocos (Keeling) Islands
      - Switzerland
      - Chile
      - China
      - Côte-dIvoire
      - Cameroon
      - Democratic Republic of the Congo
      - Cook Islands
      - Colombia
      - Comoros
      - Cabo Verde
      - Costa Rica
      - Cuba
      - Curaçao
      - Christmas Island
      - Cayman Islands
      - Cyprus
      - Czechia
      - Germany
      - Djibouti
      - Dominica
      - Denmark
      - Dominican Republic
      - Algeria
      - Ecuador
      - Egypt
      - Eritrea
      - Western Sahara
      - Spain
      - Estonia
      - Ethiopia
      - Finland
      - Fiji
      - Falkland Islands (Malvinas)
      - France
      - Faroe Islands
      - Federated States of Micronesia
      - Gabon
      - United Kingdom
      - Georgia
      - Guernsey
      - Ghana
      - Gibraltar
      - Guinea
      - Guadeloupe
      - Gambia
      - Guinea Bissau
      - Equatorial Guinea
      - Greece
      - Grenada
      - Greenland
      - Guatemala
      - French Guiana
      - Guam
      - Guyana
      - Hong Kong
      - Heard Island and McDonald Islands
      - Honduras
      - Croatia
      - Haiti
      - Hungary
      - Indonesia
      - Isle of Man
      - India
      - British Indian Ocean Territory
      - Ireland
      - Islamic Republic of Iran
      - Iraq
      - Iceland
      - Israel
      - Italy
      - Jamaica
      - Jersey
      - Jordan
      - Japan
      - Kazakhstan
      - Kenya
      - Kyrgyzstan
      - Cambodia
      - Kiribati
      - Saint-Kitts-and-Nevis
      - South Korea
      - Kuwait
      - Lao-Peoples-Democratic-Republic
      - Lebanon
      - Liberia
      - Libya
      - Saint-Lucia
      - Liechtenstein
      - Sri Lanka
      - Lesotho
      - Lithuania
      - Luxembourg
      - Latvia
      - Macao
      - Saint Martin (French-part)
      - Morocco
      - Monaco
      - Republic of Moldova
      - Madagascar
      - Maldives
      - Mexico
      - Marshall Islands
      - North Macedonia
      - Mali
      - Malta
      - Myanmar
      - Montenegro
      - Mongolia
      - Northern Mariana Islands
      - Mozambique
      - Mauritania
      - Montserrat
      - Martinique
      - Mauritius
      - Malawi
      - Malaysia
      - Mayotte
      - Namibia
      - New Caledonia
      - Niger
      - Norfolk Island
      - Nigeria
      - Nicaragua
      - Niue
      - Netherlands
      - Norway
      - Nepal
      - Nauru
      - New Zealand
      - Oman
      - Pakistan
      - Panama
      - Pitcairn
      - Peru
      - Philippines
      - Palau
      - Papua New Guinea
      - Poland
      - Puerto Rico
      - North Korea
      - Portugal
      - Paraguay
      - State of Palestine
      - French Polynesia
      - Qatar
      - Réunion
      - Romania
      - Russia
      - Rwanda
      - Saudi Arabia
      - Sudan
      - Senegal
      - Singapore
      - South Georgia and the South Sandwich Islands
      - Saint Helena Ascension and Tristan da Cunha
      - Svalbard and Jan Mayen
      - Solomon Islands
      - Sierra Leone
      - El Salvador
      - San Marino
      - Somalia
      - Saint Pierre and Miquelon
      - Serbia
      - South Sudan
      - Sao Tome and Principe
      - Suriname
      - Slovakia
      - Slovenia
      - Sweden
      - Eswatini
      - Sint Maarten (Dutch-part)
      - Seychelles
      - Syrian Arab Republic
      - Turks and Caicos Islands
      - Chad
      - Togo
      - Thailand
      - Tajikistan
      - Tokelau
      - Turkmenistan
      - Timor Leste
      - Tonga
      - Trinidad and Tobago
      - Tunisia
      - Turkey
      - Tuvalu
      - Taiwan 
      - United Republic of Tanzania
      - Uganda
      - Ukraine
      - United States Minor Outlying Islands
      - Uruguay
      - United-States
      - Uzbekistan
      - Holy See (Vatican City State)
      - Saint Vincent and the Grenadines
      - Bolivarian Republic of Venezuela
      - Virgin Islands British
      - Virgin Islands U.S.
      - VietNam
      - Vanuatu
      - Wallis and Futuna
      - Samoa
      - Yemen
      - South Africa
      - Zambia
      - Zimbabwe
 Receive email updates on C4AI and Cohere research, events, products and services?:
   type: select
   options: 
     - Yes
     - No
 I agree to use this model for non-commercial use ONLY: checkbox
---


# Model Card for C4AI Command R 08-2024

## Model Summary
<!-- Provide a quick summary of what the model is/does. -->
C4AI Command R 08-2024 is a research release of a 35 billion parameter highly performant generative model. Command R 08-2024 is a large language model with open weights optimized for a variety of use cases including reasoning, summarization, and question answering. Command R 08-2024 has the capability for multilingual generation, trained on 23 languages and evaluated in 10 languages and highly performant RAG capabilities.

Developed by: Cohere and [Cohere For AI](https://cohere.for.ai)

- Point of Contact: Cohere For AI: [cohere.for.ai](https://cohere.for.ai/)
- License: [CC-BY-NC](https://cohere.com/c4ai-cc-by-nc-license), requires also adhering to [C4AI's Acceptable Use Policy](https://docs.cohere.com/docs/c4ai-acceptable-use-policy)
- Model: c4ai-command-r-08-2024
- Model Size: 35 billion parameters
- Context length: 128K

**Try C4AI Command R**

If you want to try Command R before downloading the weights, the model is hosted in a hugging face space [here](https://huggingface.co/spaces/CohereForAI/c4ai-command?model=command-r-08-2024).


**Usage**

Please use `transformers` version 4.39.1 or higher
```python
# pip install 'transformers>=4.39.1'
from transformers import AutoTokenizer, AutoModelForCausalLM

model_id = "CohereForAI/c4ai-command-r-08-2024"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)

# Format message with the command-r-08-2024 chat template
messages = [{"role": "user", "content": "Hello, how are you?"}]
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
## <BOS_TOKEN><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Hello, how are you?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>

gen_tokens = model.generate(
    input_ids, 
    max_new_tokens=100, 
    do_sample=True, 
    temperature=0.3,
)

gen_text = tokenizer.decode(gen_tokens[0])
print(gen_text)
```

## Model Details

**Input**: Models input text only.

**Output**: Models generate text only.

**Model Architecture**: This is an auto-regressive language model that uses an optimized transformer architecture. After pretraining, this model uses supervised fine-tuning (SFT) and preference training to align model behavior to human preferences for helpfulness and safety. We use grouped query attention (GQA) to improve inference speed.

**Languages covered**: The model has been trained on 23 languages (English, French, Spanish, Italian, German, Portuguese, Japanese, Korean, Arabic, Simplified Chinese, Russian, Polish, Turkish, Vietnamese, Dutch, Czech, Indonesian, Ukrainian, Romanian, Greek, Hindi, Hebrew, and Persian) and evaluated on 10 languages (English, French, Spanish, Italian, German, Portuguese, Japanese, Korean, Arabic, Simplified Chinese).

**Context length**: Command R 08-2024 supports a context length of 128K.

### Tool use & Agent capabilities:
Command R 08-2024 has been specifically trained with conversational tool use capabilities. These have been trained into the model via a mixture of supervised fine-tuning and preference fine-tuning, using a specific prompt template. Deviating from this prompt template will likely reduce performance.

Command R 08-2024’s tool use functionality takes a conversation as input (with an optional user-system preamble), along with a list of available tools. The model will then generate a json-formatted list of actions to execute on a subset of those tools. Command R 08-2024 may use one of its supplied tools more than once.

The model has been trained to recognise a special `directly_answer` tool, which it uses to indicate that it doesn’t want to use any of its other tools. The ability to abstain from calling a specific tool can be useful in a range of situations, such as greeting a user, or asking clarifying questions. We recommend including the `directly_answer` tool, but it can be removed or renamed if required.

Comprehensive documentation for working with Command R 08-2024's tool use prompt template can be found [here](https://docs.cohere.com/docs/prompting-command-r).

Command R 08-2024 also supports Hugging Face's [tool use API](https://huggingface.co/docs/transformers/main/en/chat_templating#advanced-tool-use--function-calling)

The code snippet below shows a minimal working example on how to render a prompt.

<details>
<summary><b>Usage: Rendering Tool Use Prompts [CLICK TO EXPAND]</b> </summary>

```python
from transformers import AutoTokenizer

model_id = "CohereForAI/c4ai-command-r-08-2024"
tokenizer = AutoTokenizer.from_pretrained(model_id)

# define conversation input:
conversation = [
    {"role": "user", "content": "Whats the biggest penguin in the world?"}
]
# Define tools available for the model to use:
tools = [
  {
    "name": "internet_search",
    "description": "Returns a list of relevant document snippets for a textual query retrieved from the internet",
    "parameter_definitions": {
      "query": {
        "description": "Query to search the internet with",
        "type": 'str',
        "required": True
      }
    }
  },
  {
    'name': "directly_answer",
    "description": "Calls a standard (un-augmented) AI chatbot to generate a response given the conversation history",
    'parameter_definitions': {}
  }
]

# render the tool use prompt as a string:
tool_use_prompt = tokenizer.apply_tool_use_template(
    conversation,
    tools=tools,
    tokenize=False,
    add_generation_prompt=True,
)
print(tool_use_prompt)
```

</details>


<details>
<summary><b>Usage: Rendering prompts with the Tool Use API [CLICK TO EXPAND]</b> </summary>

```python
from transformers import AutoTokenizer

model_id = "CohereForAI/c4ai-command-r-08-2024"
tokenizer = AutoTokenizer.from_pretrained(model_id)

# define conversation input:
conversation = [
    {"role": "user", "content": "Whats the biggest penguin in the world?"}
]

# Define tools available for the model to use
# Type hints and docstrings from Python functions are automatically extracted
def internet_search(query: str):
    """
    Returns a list of relevant document snippets for a textual query retrieved from the internet

    Args:
        query: Query to search the internet with
    """
    pass

def directly_answer():
    """
    Calls a standard (un-augmented) AI chatbot to generate a response given the conversation history
    """
    pass

tools = [internet_search, directly_answer]

# render the tool use prompt as a string:
tool_use_prompt = tokenizer.apply_chat_template(
    conversation,
    tools=tools,
    tokenize=False,
    add_generation_prompt=True,
)
print(tool_use_prompt)
```

</details>

<details>
<summary><b>Example Rendered Tool Use Prompt [CLICK TO EXPAND]</b></summary>

````
<BOS_TOKEN><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|># Safety Preamble
The instructions in this section override those in the task description and style guide sections. Don't answer questions that are harmful or immoral.

# System Preamble
## Basic Rules
You are a powerful conversational AI trained by Cohere to help people. You are augmented by a number of tools, and your job is to use and consume the output of these tools to best help the user. You will see a conversation history between yourself and a user, ending with an utterance from the user. You will then see a specific instruction instructing you what kind of response to generate. When you answer the user's requests, you cite your sources in your answers, according to those instructions.

# User Preamble
## Task and Context
You help people answer their questions and other requests interactively. You will be asked a very wide array of requests on all kinds of topics. You will be equipped with a wide range of search engines or similar tools to help you, which you use to research your answer. You should focus on serving the user's needs as best you can, which will be wide-ranging.

## Style Guide
Unless the user asks for a different style of answer, you should answer in full sentences, using proper grammar and spelling.

## Available Tools
Here is a list of tools that you have available to you:

```python
def internet_search(query: str) -> List[Dict]:
    """Returns a list of relevant document snippets for a textual query retrieved from the internet

    Args:
        query (str): Query to search the internet with
    """
    pass
```

```python
def directly_answer() -> List[Dict]:
    """Calls a standard (un-augmented) AI chatbot to generate a response given the conversation history
    """
    pass
```<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Whats the biggest penguin in the world?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>Write 'Action:' followed by a json-formatted list of actions that you want to perform in order to produce a good response to the user's last input. You can use any of the supplied tools any number of times, but you should aim to execute the minimum number of necessary actions for the input. You should use the `directly-answer` tool if calling the other tools is unnecessary. The list of actions you want to call should be formatted as a list of json objects, for example:
```json
[
    {
        "tool_name": title of the tool in the specification,
        "parameters": a dict of parameters to input into the tool as they are defined in the specs, or {} if it takes no parameters
    }
]```<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>
````

</details>

<details>
<summary><b>Example Rendered Tool Use Completion [CLICK TO EXPAND]</b></summary>

````
Action: ```json
[
      {
          "tool_name": "internet_search",
          "parameters": {
              "query": "biggest penguin in the world"
          }
      }
]
```
````
</details>


### Grounded Generation and RAG Capabilities: 

Command R 08-2024 has been specifically trained with grounded generation capabilities. This means that it can generate responses based on a list of supplied document snippets, and it will include grounding spans (citations) in its response indicating the source of the information. This can be used to enable behaviors such as grounded summarization and the final step of Retrieval Augmented Generation (RAG).This behavior has been trained into the model via a mixture of supervised fine-tuning and preference fine-tuning, using a specific prompt template. Deviating from this prompt template may reduce performance, but we encourage experimentation.

Command R 08-2024’s grounded generation behavior takes a conversation as input (with an optional user-supplied system preamble, indicating task, context and desired output style), along with a list of retrieved document snippets. The document snippets should be chunks, rather than long documents, typically around 100-400 words per chunk. Document snippets consist of key-value pairs. The keys should be short descriptive strings, the values can be text or semi-structured.

By default, Command R 08-2024 will generate grounded responses by first predicting which documents are relevant, then predicting which ones it will cite, then generating an answer. Finally, it will then insert grounding spans into the answer. See below for an example. This is referred to as `accurate` grounded generation.

The model is trained with a number of other answering modes, which can be selected by prompt changes. A `fast` citation mode is supported in the tokenizer, which will directly generate an answer with grounding spans in it, without first writing the answer out in full. This sacrifices some grounding accuracy in favor of generating fewer tokens.

Comprehensive documentation for working with Command R 08-2024's grounded generation prompt template can be found [here](https://docs.cohere.com/docs/prompting-command-r).

The code snippet below shows a minimal working example on how to render a prompt.

<details>
<summary> <b>Usage: Rendering Grounded Generation prompts [CLICK TO EXPAND]</b> </summary>

````python
from transformers import AutoTokenizer

model_id = "CohereForAI/c4ai-command-r-08-2024"
tokenizer = AutoTokenizer.from_pretrained(model_id)

# define conversation input:
conversation = [
    {"role": "user", "content": "Whats the biggest penguin in the world?"}
]
# define documents to ground on:
documents = [
    { "title": "Tall penguins", "text": "Emperor penguins are the tallest growing up to 122 cm in height." }, 
    { "title": "Penguin habitats", "text": "Emperor penguins only live in Antarctica."}
]

# render the tool use prompt as a string:
grounded_generation_prompt = tokenizer.apply_grounded_generation_template(
    conversation,
    documents=documents,
    citation_mode="accurate", # or "fast"
    tokenize=False,
    add_generation_prompt=True,
)
print(grounded_generation_prompt)
````
</details>

<details>
<summary><b>Example Rendered Grounded Generation Prompt [CLICK TO EXPAND]</b></summary>

````
<BOS_TOKEN><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|># Safety Preamble
The instructions in this section override those in the task description and style guide sections. Don't answer questions that are harmful or immoral.

# System Preamble
## Basic Rules
You are a powerful conversational AI trained by Cohere to help people. You are augmented by a number of tools, and your job is to use and consume the output of these tools to best help the user. You will see a conversation history between yourself and a user, ending with an utterance from the user. You will then see a specific instruction instructing you what kind of response to generate. When you answer the user's requests, you cite your sources in your answers, according to those instructions.

# User Preamble
## Task and Context
You help people answer their questions and other requests interactively. You will be asked a very wide array of requests on all kinds of topics. You will be equipped with a wide range of search engines or similar tools to help you, which you use to research your answer. You should focus on serving the user's needs as best you can, which will be wide-ranging.

## Style Guide
Unless the user asks for a different style of answer, you should answer in full sentences, using proper grammar and spelling.<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Whats the biggest penguin in the world?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|><results>
Document: 0
title: Tall penguins
text: Emperor penguins are the tallest growing up to 122 cm in height.

Document: 1
title: Penguin habitats
text: Emperor penguins only live in Antarctica.
</results><|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>Carefully perform the following instructions, in order, starting each with a new line.
Firstly, Decide which of the retrieved documents are relevant to the user's last input by writing 'Relevant Documents:' followed by comma-separated list of document numbers. If none are relevant, you should instead write 'None'.
Secondly, Decide which of the retrieved documents contain facts that should be cited in a good answer to the user's last input by writing 'Cited Documents:' followed a comma-separated list of document numbers. If you dont want to cite any of them, you should instead write 'None'.
Thirdly, Write 'Answer:' followed by a response to the user's last input in high quality natural english. Use the retrieved documents to help you. Do not insert any citations or grounding markup.
Finally, Write 'Grounded answer:' followed by a response to the user's last input in high quality natural english. Use the symbols <co: doc> and </co: doc> to indicate when a fact comes from a document in the search result, e.g <co: 0>my fact</co: 0> for a fact from document 0.<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>
````

</details>

<details>
<summary><b>Example Rendered Grounded Generation Completion [CLICK TO EXPAND]</b></summary>

````
Relevant Documents: 0,1
Cited Documents: 0,1
Answer: The Emperor Penguin is the tallest or biggest penguin in the world. It is a bird that lives only in Antarctica and grows to a height of around 122 centimetres.
Grounded answer: The <co: 0>Emperor Penguin</co: 0> is the <co: 0>tallest</co: 0> or biggest penguin in the world. It is a bird that <co: 1>lives only in Antarctica</co: 1> and <co: 0>grows to a height of around 122 centimetres.</co: 0>
````
</details>

### Code Capabilities:
Command R 08-2024 has been optimized to interact with your code, by requesting code snippets, code explanations, or code rewrites. It might not perform well out-of-the-box for pure code completion. For better performance, we also recommend using a low temperature (and even greedy decoding) for code-generation related instructions.

### Model Card Contact
For errors or additional questions about details in this model card, contact [[email protected]](mailto:[email protected]).

### Terms of Use: 
We hope that the release of this model will make community-based research efforts more accessible, by releasing the weights of a highly performant 35 billion parameter model to researchers all over the world. This model is governed by a [CC-BY-NC](https://cohere.com/c4ai-cc-by-nc-license) License with an acceptable use addendum, and also requires adhering to [C4AI's Acceptable Use Policy](https://docs.cohere.com/docs/c4ai-acceptable-use-policy).

### Try Chat:
You can try Command-R chat in the playground [here](https://dashboard.cohere.com/playground/chat).