File size: 4,711 Bytes
7d0a716 87d6fdf 541f112 7d0a716 0e17c95 7d0a716 ce9b2c0 fd42157 e06c3e8 fd42157 60f824a ae95934 7d0a716 ce9b2c0 f9e1d85 a9e6b87 f73bfae ae95934 a9e6b87 ae95934 a9e6b87 0e17c95 f73bfae f9e1d85 ae95934 b38334a 119d339 b38334a ae72b29 fd42157 7d0a716 b38334a 7d0a716 b38334a 7d0a716 b38334a ae72b29 b38334a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
---
inference: false
license: cc-by-nc-sa-4.0
datasets:
- asyafiqe/orca_mini_v1_indonesia
language:
- en
- id
---
# 🦚Merak-7B-v3-Mini-Orca🐳
<p align="center">
<img src="https://i.imgur.com/39sQd3h.png" alt="Merak Orca" width="300" height="300"/>
</p>
**Merak-7B-v3-Mini-Orca** is Ichsan2895's [Merak-7B-v3](https://huggingface.co/Ichsan2895/Merak-7B-v3) fine-tuned
on Bahasa Indonesia translated psmathur's [orca_mini_v1_dataset](https://huggingface.co/datasets/psmathur/orca_mini_v1_dataset).
## Usage
This model fit on 16GB VRAM GPU (Google Collab T4 wil do), by using BitsandBytes it can run on 6GB VRAM GPU.
[](https://colab.research.google.com/drive/11xmPcRNirGwZcpgmNPNpUioJUG4PQBuh)
**Quantized** versions is available:
GPTQ: https://huggingface.co/asyafiqe/Merak-7B-v3-Mini-Orca-Indo-GPTQ
GGML/GGUF: I will try to make this version once GGUF merge is stable.
Start chatting with Merak Mini Orca using the following code snippet:
```
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
tokenizer = AutoTokenizer.from_pretrained("asyafiqe/Merak-7B-v3-Mini-Orca-Indo")
model = AutoModelForCausalLM.from_pretrained("asyafiqe/Merak-7B-v3-Mini-Orca-Indo", torch_dtype=torch.float16, device_map="auto")
system_prompt = "SYSTEM: 'Anda adalah asisten AI. Anda akan diberi tugas. Anda harus menghasilkan jawaban yang rinci dan panjang.\n"
message = "Buatlah rencana untuk mengurangi penggunaan listrik di rumah."
prompt = f"{system_prompt}USER: {message}\nASSISTANT:"
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
output = model.generate(**inputs, do_sample=True, temperature=0.1, max_new_tokens=200)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
### Prompt format
You can use [Vicuna 1.1](https://github.com/oobabooga/text-generation-webui/blob/main/instruction-templates/Vicuna-v1.1.yaml)
format for Ooobabooga's text generation webui.
```
SYSTEM: Anda adalah asisten AI. Anda akan diberi tugas. Anda harus memberikan jawaban yang rinci dan panjang.
USER: <prompt> (without the <>)
ASSISTANT:
```
## Training details
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="150" height="24"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
Merak-7B-v3-Mini-Orca was instruction fine-tuned on 2 x 3090-24GB for 6 hours. [LoRA](https://github.com/microsoft/LoRA), [DeepSpeed ZeRO-2](https://github.com/microsoft/DeepSpeed), and [FlashAttention](https://github.com/Dao-AILab/flash-attention) were implemented during training using [Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl).
Hyperparameter | value |
| ------ | ------ |
learning rate | 0.0004 |
batch size | 16 |
microbatch size | 2 |
warmup step | 100 |
epochs | 2 |
weight decay | 0.0 |
lr scheduler | cosine |
lora alpha | 16 |
lora rank | 16 |
lora dropout | 0.05 |
lora target modules | q_proj, v_proj, k_proj, o_proj |
cutoff length | 4096 |
#### Training loss
Step |Train Loss |
| ------ | ------ |
1 |0.9578 |
100 |0.816 |
200 |0.7819 |
300 |0.7279 |
400 |0.732 |
500 |0.7139 |
600 |0.6829 |
700 |0.6641 |
800 |0.6553 |
#### Limitations and bias
Llama 2 and fine-tuned variants are a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Llama 2 and any fine-tuned varient's potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 2 variants, developers should perform safety testing and tuning tailored to their specific applications of the model.
Please see the Responsible Use Guide available at https://ai.meta.com/llama/responsible-use-guide/
## Citation
```
@Paper{arXiv,
author = {Touvron, et al},
title = {Llama 2: Open Foundation and Fine-Tuned Chat Models},
journal = {arXiv preprint arXiv:2307.09288},
year = {2023}
}
@misc{orca_mini_v3_70b,
author = {Pankaj Mathur},
title = {orca_mini_v3_70b: An Orca Style Llama2-70b model},
year = {2023},
publisher = {HuggingFace},
journal = {HuggingFace repository},
howpublished = {\url{https://https://huggingface.co/psmathur/orca_mini_v3_70b},
}
@article{hu2021lora,
title={LoRA: Low-Rank Adaptation of Large Language Models},
author={Hu, Edward J. and Shen, Yelong and Wallis, Phillip and Allen-Zhu, Zeyuan and Li, Yuanzhi and Wang, Shean and Chen, Weizhu},
journal={CoRR},
year={2021}
}
``` |