davidxmle commited on
Commit
8ebd296
·
verified ·
1 Parent(s): ff2451b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +84 -0
README.md CHANGED
@@ -1,5 +1,89 @@
1
  ---
 
 
 
 
 
 
 
2
  license: other
3
  license_name: llama-3
4
  license_link: https://huggingface.co/meta-llama/Meta-Llama-3-8B/blob/main/LICENSE
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ base_model: meta-llama/Meta-Llama-3-8B
3
+ inference: false
4
+ model_creator: astronomer-io
5
+ model_name: Meta-Llama-3-8B
6
+ model_type: llama
7
+ pipeline_tag: text-generation
8
+ quantized_by: davidxmle
9
  license: other
10
  license_name: llama-3
11
  license_link: https://huggingface.co/meta-llama/Meta-Llama-3-8B/blob/main/LICENSE
12
+ tags:
13
+ - llama
14
+ - llama-3
15
+ - facebook
16
+ - meta
17
+ - astronomer
18
+ - gptq
19
+ - pretrained
20
+ - quantized
21
+ - finetuned
22
+ - autotrain_compatible
23
+ - endpoints_compatible
24
+ datasets:
25
+ - wikitext
26
  ---
27
+ <!-- header start -->
28
+ <!-- 200823 -->
29
+ <div style="width: auto; margin-left: auto; margin-right: auto">
30
+ <img src="https://www.astronomer.io/logo/astronomer-logo-RGB-standard-1200px.png" alt="Astronomer" style="width: 60%; min-width: 400px; display: block; margin: auto;">
31
+ </div>
32
+ <div style="margin-top: 1.0em; margin-bottom: 1.0em;"></div>
33
+
34
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">This model is generously created and made open source by <a href="https://astronomer.io">Astronomer</a>.</p></div>
35
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">Astronomer is the de facto company for <a href="https://airflow.apache.org/">Apache Airflow</a>, the most trusted open-source framework for data orchestration and MLOps.</p></div>
36
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
37
+ <!-- header end -->
38
+
39
+ # Llama-3-8B-GPTQ-8-Bit
40
+ - Original Model creator: [Meta Llama from Meta](https://huggingface.co/meta-llama)
41
+ - Original model: [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B)
42
+ - Built with Meta Llama 3
43
+ - Quantized by [David Xue](https://www.linkedin.com/in/david-xue-uva/) from [Astronomer](https://astronomer.io)
44
+
45
+ ## MUST READ: Very Important!! Note About Untrained Special Tokens in Llama 3 Base (Non-instruct) Models & Fine-tuning Llama 3 Base
46
+ - Special tokens such as the ones used for instruct are undertrained in Llama 3 base models.
47
+ - Credits: discovered by Daniel Han https://twitter.com/danielhanchen/status/1781395882925343058
48
+ - ![image/png](https://cdn-uploads.huggingface.co/production/uploads/655ad0f8727df37c77a09cb9/1U2rRrx60p1pNeeAZw8Rd.png)
49
+ - A patch function is under way, fine-tuning this model for instruction following may cause `NaN` graidents unless this problem is addressed.
50
+
51
+ ## Important Note About Serving with vLLM & oobabooga/text-generation-webui
52
+ - For loading this model onto vLLM, make sure all requests have `"stop_token_ids":[128001, 128009]` to temporarily address the non-stop generation issue.
53
+ - vLLM does not yet respect `generation_config.json`.
54
+ - vLLM team is working on a a fix for this https://github.com/vllm-project/vllm/issues/4180
55
+ - For oobabooga/text-generation-webui
56
+ - Load the model via AutoGPTQ, with `no_inject_fused_attention` enabled. This is a bug with AutoGPTQ library.
57
+ - Under `Parameters` -> `Generation` -> `Skip special tokens`: turn this off (deselect)
58
+ - Under `Parameters` -> `Generation` -> `Custom stopping strings`: add `"<|end_of_text|>","<|eot_id|>"` to the field
59
+
60
+ <!-- description start -->
61
+ ## Description
62
+
63
+ This repo contains 4 Bit quantized GPTQ model files for [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B).
64
+
65
+ This model can be loaded with less than 6 GB of VRAM (huge reduction from the original 16.07GB model) and can be served lightning fast with the cheapest Nvidia GPUs possible (Nvidia T4, Nvidia K80, RTX 4070, etc).
66
+
67
+ The 4 bit GPTQ quant has small quality degradation from the original `bfloat16` model but can be served on much smaller GPUs with maximum improvement in latency and throughput.
68
+
69
+ <!-- description end -->
70
+
71
+ ## GPTQ Quantization Method
72
+ - This model is quantized by utilizing the AutoGPTQ library, following best practices noted by [GPTQ paper](https://arxiv.org/abs/2210.17323)
73
+ - Quantization is calibrated and aligned with random samples from the specified dataset (wikitext for now) for minimum accuracy loss.
74
+
75
+ | Branch | Bits | Group Size | Act Order | Damp % | GPTQ Dataset | Sequence Length | VRAM Size | ExLlama | Description |
76
+ | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
77
+ | [main](https://huggingface.co/astronomer-io/Llama-3-8B-GPTQ-4-Bit/tree/main) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 5.74 GB | Yes | 4-bit, with Act Order and group size 128g. Smallest model possible with small accuracy loss |
78
+ | More variants to come | TBD | TBD | TBD | TBD | TBD | TBD | TBD | TBD | May upload additional variants of GPTQ 4 bit models in the future using different parameters such as 128g group size and etc. |
79
+
80
+ ## Serving this GPTQ model using vLLM
81
+ Tested serving this model via vLLM using an Nvidia T4 (16GB VRAM).
82
+
83
+ Tested with the below command
84
+ ```bash
85
+ python -m vllm.entrypoints.openai.api_server --model astronomer-io/Llama-3-8B-GPTQ-4-Bit --max-model-len 8192 --dtype float16
86
+ ```
87
+ For the non-stop token generation bug, make sure to send requests with `stop_token_ids":[128001, 128009]` to vLLM endpoint
88
+ ### Contributors
89
+ - Quantized by [David Xue, Machine Learning Engineer from Astronomer](https://www.linkedin.com/in/david-xue-uva/)