File size: 20,837 Bytes
6bde718
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
013b69f
6bde718
 
 
 
 
 
 
 
 
 
16cd86b
6bde718
 
 
 
 
 
 
16cd86b
6bde718
 
 
 
 
 
 
 
 
16cd86b
6bde718
 
16cd86b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
364b5d4
d9130e5
3559e8d
 
bec11c7
3559e8d
 
58000b1
d9130e5
 
 
 
 
58000b1
d9130e5
 
 
 
 
 
 
 
 
 
 
 
 
 
58000b1
d9130e5
 
 
 
 
 
 
 
 
 
 
 
 
58000b1
d9130e5
 
 
 
 
 
 
 
 
58000b1
 
 
 
 
 
 
 
 
 
 
 
 
 
d9130e5
58000b1
 
 
 
 
 
 
 
 
 
 
 
d9130e5
 
 
 
 
 
 
 
 
 
 
 
 
58000b1
 
 
 
 
 
 
 
 
 
 
d9130e5
 
44319e3
8348df6
364b5d4
 
 
 
ecee486
364b5d4
 
 
 
 
 
ecee486
364b5d4
ecee486
364b5d4
 
 
 
ecee486
 
364b5d4
 
 
 
 
ecee486
f33b03c
 
364b5d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecee486
 
364b5d4
 
 
 
 
 
b97bbfa
364b5d4
 
 
 
ecee486
364b5d4
 
ecee486
 
364b5d4
 
 
ecee486
364b5d4
 
 
 
 
 
 
 
 
ecee486
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
364b5d4
 
ecee486
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
364b5d4
ecee486
364b5d4
ecee486
 
364b5d4
 
 
 
ecee486
364b5d4
 
 
 
ecee486
364b5d4
 
ecee486
364b5d4
 
 
 
 
 
 
 
 
ecee486
364b5d4
 
 
 
 
 
 
 
 
 
 
 
ecee486
364b5d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed4a067
de24132
364b5d4
44319e3
364b5d4
16cd86b
6bde718
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9447cb0
 
47173a2
 
 
 
 
 
 
 
 
 
 
 
 
 
8905658
6bde718
2092913
 
 
 
 
 
051503e
bec11c7
f6ed970
571ea1b
051503e
571ea1b
f6ed970
571ea1b
 
 
ca95c4e
b96a77d
8905658
8d8e209
 
 
 
 
 
 
 
 
 
8905658
 
 
 
 
 
 
8d8e209
a39d9bc
c13272f
8d8e209
 
 
8905658
 
 
 
 
 
 
8d8e209
 
 
 
8905658
 
 
8d8e209
 
 
 
 
 
dc17918
e754b06
6a4d52c
dc17918
b0302cd
6a4d52c
 
dc17918
a39d9bc
 
7876f42
bec11c7
 
ed8f868
 
f5973df
7876f42
f5973df
a0817a1
bec11c7
f5973df
 
 
 
 
 
 
4645ed5
a0817a1
f5973df
bec11c7
a0817a1
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
---
base_model:
- winglian/llama-3-8b-256k-PoSE
- Locutusque/Llama-3-Orca-1.0-8B
- NousResearch/Meta-Llama-3-8B
- abacusai/Llama-3-Smaug-8B
- beomi/Llama-3-Open-Ko-8B-Instruct-preview
- NousResearch/Meta-Llama-3-8B-Instruct
library_name: transformers
tags:
- mergekit
- merge

---
# πŸ‡°πŸ‡· SmartLlama-3-Ko-8B-256k-PoSE

<a href="https://ibb.co/rs8DhB8"><img src="https://i.ibb.co/8cv1wyv/Smart-Llama-3-Ko-8-B-256k-Po-SE.png" alt="Smart-Llama-3-Ko-8-B-256k-Po-SE" border="0"></a>

SmartLlama-3-Ko-8B-256k-[PoSE](https://huggingface.co/papers/2309.10400) is an advanced AI model that integrates the capabilities of several advanced language models, designed to excel in a variety of tasks ranging from technical problem-solving to multilingual communication, especially with its extended context length of 256k tokens. This model is uniquely positioned to handle larger and more complex datasets and longer conversational contexts, making it ideal for deep learning applications requiring extensive text understanding and generation.

## πŸ“• Merge Details

### Component Models and Contributions
- **NousResearch/Meta-Llama-3-8B and Meta-Llama-3-8B-Instruct**: These models provide a solid foundation for general language understanding and instruction-following capabilities.
- **winglian/llama-3-8b-256k-PoSE**: Utilizes Positional Skip-wise Training (PoSE) to extend Llama's context length to 256k, significantly improving the model's ability to handle extensive texts and complex instructions, enhancing performance in tasks requiring long-duration focus and memory.
- **Locutusque/Llama-3-Orca-1.0-8B**: Specializes in mathematical, coding, and writing tasks, bringing precision to technical and creative outputs.
- **abacusai/Llama-3-Smaug-8B**: Improves the model's performance in real-world, multi-turn conversations, which is crucial for applications in customer service and interactive learning environments.
- **beomi/Llama-3-Open-Ko-8B-Instruct-preview**: Focuses on improving understanding and generation of Korean, offering robust solutions for bilingual or multilingual applications targeting Korean-speaking audiences.

## πŸ–ΌοΈ Key Features

- **Extended Context Length**: Utilizes the PoSE (Positional Encoding) technique to handle up to 256,000 tokens, making it ideal for analyzing large volumes of text such as books, comprehensive reports, and lengthy communications.
  
- **Multilingual Support**: While primarily focused on Korean language processing, this model also provides robust support for multiple languages, enhancing its utility in global applications.
  
- **Advanced Integration of Models**: Combines strengths from various models including NousResearch's Meta-Llama-3-8B, the instruction-following capabilities of Llama-3-Open-Ko-8B-Instruct-preview, and specialized capabilities from models like Llama-3-Smaug-8B for nuanced dialogues and Orca-1.0-8B for technical precision.

## 🎨 Models Merged

The following models were included in the merge:
- **winglian/llama-3-8b-256k-PoSE**: [Extends the context handling capability](https://huggingface.co/winglian/llama-3-8b-256k-PoSE). This model uses Positional Skip-wise Training (PoSE) to enhance the handling of extended context lengths, up to 256k tokens.
- **Locutusque/Llama-3-Orca-1.0-8B**: [Enhances abilities in handling technical content](https://huggingface.co/Locutusque/Llama-3-Orca-1.0-8B). Specialized in computational, scientific, and technical tasks, improving the model's ability to process complex academic and technical language.
- **abacusai/Llama-3-Smaug-8B**: [Improves multi-turn conversational abilities](https://huggingface.co/abacusai/Llama-3-Smaug-8B). Boosts performance in engaging in lengthy, context-aware dialogues necessary for effective customer service and interactive learning.
- **beomi/Llama-3-Open-Ko-8B-Instruct-preview**: [Provides enhanced capabilities for Korean language processing](https://huggingface.co/beomi/Llama-3-Open-Ko-8B-Instruct-preview). This model is fine-tuned to understand and generate Korean, making it ideal for applications targeting Korean-speaking users.
- **NousResearch/Meta-Llama-3-8B-Instruct**: [Offers advanced instruction-following capabilities](https://huggingface.co/NousResearch/Meta-Llama-3-8B-Instruct). It is optimized to follow complex instructions, enhancing the model's utility in task-oriented dialogues and applications that require a high level of understanding and execution of user commands.


### πŸ–‹οΈ Merge Method
- **DARE TIES**: This method was employed to ensure that each component model contributes effectively to the merged model, maintaining a high level of performance across diverse applications. NousResearch/Meta-Llama-3-8B served as the base model for this integration, providing a stable and powerful framework for the other models to build upon.

## πŸ’» Ollama

```
ollama create smartllama-3-Ko-8b-256k-pose -f ./Modelfile_Q5_K_M
```

[Modelfile_Q5_K_M]
```
FROM smartllama-3-ko-8b-256k-pose-Q5_K_M.gguf
TEMPLATE """
{{- if .System }}
system
<s>{{ .System }}</s>
{{- end }}
user
<s>Human:
{{ .Prompt }}</s>
assistant
<s>Assistant:
"""

SYSTEM """
μΉœμ ˆν•œ μ±—λ΄‡μœΌλ‘œμ„œ μƒλŒ€λ°©μ˜ μš”μ²­μ— μ΅œλŒ€ν•œ μžμ„Έν•˜κ³  μΉœμ ˆν•˜κ²Œ λ‹΅ν•˜μž. 길이에 상관없이 λͺ¨λ“  λŒ€λ‹΅μ€ ν•œκ΅­μ–΄(Korean)으둜 λŒ€λ‹΅ν•΄μ€˜.
"""

PARAMETER temperature 0.7
PARAMETER num_predict 3000
PARAMETER num_ctx 256000
PARAMETER stop "<s>"
PARAMETER stop "</s>"
```

## πŸ’» Ollama Python Summarizing Normal Test Code

install all of these libraries
```
pip install requests beautifulsoup4 PyPDF2 langchain-community langchain
```

pose_test.py
```
import sys
import os
import requests
from bs4 import BeautifulSoup
import PyPDF2
from langchain_community.chat_models import ChatOllama
from langchain.schema import AIMessage, HumanMessage, SystemMessage

def clean_output(text):
    text = text.replace("</s>", "").strip()
    return text

def invoke_model(text):
    messages = [
        SystemMessage(content='You are an expert copywriter with expertise in summarizing documents.'),
        HumanMessage(content=f'Please provide a short and concise summary of the following text:\nTEXT: {text}')
    ]
    
    try:
        llm = ChatOllama(model="pose:latest")
        summary_output = llm.invoke(messages)
        if isinstance(summary_output, AIMessage):
            cleaned_content = clean_output(summary_output.content)
            return cleaned_content
        else:
            return "Unexpected data type for model output."
    except Exception as e:
        print(f"An error occurred while processing the model output: {str(e)}")
        return None

def fetch_text_from_url(url):
    try:
        response = requests.get(url)
        response.raise_for_status()
        soup = BeautifulSoup(response.text, 'html.parser')
        content = soup.find('div', {'id': 'bodyContent'})
        paragraphs = content.find_all('p')
        text_content = ' '.join(p.text for p in paragraphs)
        return text_content
    except requests.RequestException as e:
        print(f"Failed to fetch data from URL: {str(e)}")
        return None

def read_text_file(file_path):
    with open(file_path, "r", encoding="utf-8") as file:
        return file.read()

def read_pdf(file_path):
    with open(file_path, "rb") as file:
        reader = PyPDF2.PdfReader(file)
        text_content = ""
        for page in reader.pages:
            extracted_text = page.extract_text()
            if extracted_text:
                text_content += extracted_text + "\n"
        return text_content

def summarize_content(source):
    if source.startswith(('http://', 'https://')):
        text_content = fetch_text_from_url(source)
    else:
        _, file_extension = os.path.splitext(source)
        if file_extension.lower() == '.pdf':
            text_content = read_pdf(source)
        elif file_extension.lower() in ['.txt', '.text']:
            text_content = read_text_file(source)
        else:
            print("Unsupported file type")
            return
    
    if text_content:
        summary = invoke_model(text_content)
        print("Summary of the document:")
        print(summary)
    else:
        print("No text found or unable to extract text from source.")

if __name__ == '__main__':
    if len(sys.argv) < 2:
        print("Usage: python script.py <file_path_or_url>")
    else:
        source = sys.argv[1]
        summarize_content(source)

```

run txt file (assume txt is a.txt)
```
python pose_test.py a.txt 
```

run url (assume txt is url)
```
python pose_test.py url
```

You can find both test results below on the section : Test Result1

## πŸ’» Ollama Python Summarizing Test Code for the target lang response

install all of these libraries
```
pip install requests beautifulsoup4 PyPDF2 googletrans==4.0.0-rc1 langchain-community langchain aiohttp asyncio aiofiles
```

pose_lang.py
```
import sys
import os
import aiohttp
import PyPDF2
from bs4 import BeautifulSoup
from langchain_community.chat_models import ChatOllama
from langchain.schema import AIMessage, HumanMessage, SystemMessage
from googletrans import Translator
import logging
import asyncio
import aiofiles

# Setup logging
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')

def clean_output(text):
    """Cleans the model output text."""
    text = text.replace("</s>", "").strip()  # Specific cleaning operation
    return text

def translate_text(text, src_lang, dest_lang):
    """Translates text from source language to destination language using Google Translate."""
    if src_lang == dest_lang:
        return text
    translator = Translator()
    try:
        translation = translator.translate(text, src=src_lang, dest=dest_lang)
        return translation.text
    except Exception as e:
        logging.error(f"Translation failed: {e}")
        return text

def detect_language(text):
    """Detects the language of the given text."""
    translator = Translator()
    try:
        detected = translator.detect(text)
        return detected.lang
    except Exception as e:
        logging.error(f"Language detection failed: {e}")
        return None

async def invoke_model(text, target_lang):
    """Asynchronously invokes the chat model and processes the response with language-specific instructions."""
    llm = ChatOllama(model="pose:latest")
    try:
        # Define messages based on target language
        if target_lang == 'ko':
            messages = [
                SystemMessage(content='λ¬Έμ„œμ˜ 핡심 μš”μ•½μ„ μƒμ„Έν•˜κ²Œ μ œκ³΅ν•΄ μ£Όμ‹€ μ „λ¬Έκ°€λ‘œμ„œ, λ‹€μŒ λ¬Έμ„œλ₯Ό μš”μ•½ν•΄ μ£Όμ„Έμš”.'),
                HumanMessage(content=f'λ‹€μŒ ν…μŠ€νŠΈμ— λŒ€ν•œ 전문적 μš”μ•½μ„ μ œκ³΅ν•΄ μ£Όμ„Έμš”. μš”μ•½μ€ ν•œκ΅­μ–΄μ˜ 언어적 λ‰˜μ•™μŠ€μ— 맞게 졜고 μˆ˜μ€€μ˜ λͺ…ν™•μ„±κ³Ό μ„ΈλΆ€ 사항을 μ€€μˆ˜ν•΄μ•Ό ν•©λ‹ˆλ‹€:\n\nTEXT: {text}')
            ]
        else:  # default to English if not Korean
            messages = [
                SystemMessage(content='As an adept summarizer, your expertise is required to condense the following document into its essential points in detail.'),
                HumanMessage(content=f'Kindly provide an expert summary of the text below, adhering to the highest standards of clarity and detail. Ensure the response is tailored to the linguistic nuances of English:\n\nTEXT: {text}')
            ]

        # Since invoke is not awaitable, run it in a thread if it's blocking
        response = await asyncio.to_thread(llm.invoke, messages)
        if isinstance(response, AIMessage):
            cleaned_content = clean_output(response.content)
            content_lang = detect_language(cleaned_content)
            print(f"Current content language: {content_lang}, Target language to be translated to: {target_lang}")
            if content_lang != target_lang:
                return translate_text(cleaned_content, content_lang, target_lang)
            return cleaned_content
        else:
            raise ValueError("Model did not return an AIMessage")
    except Exception as e:
        logging.error(f"Error during model invocation: {e}")
        return "Model invocation failed."


async def fetch_text_from_url(url):
    """Asynchronously fetches and extracts text content from a given URL."""
    async with aiohttp.ClientSession() as session:
        try:
            async with session.get(url) as response:
                content = await response.text()
                soup = BeautifulSoup(content, 'html.parser')
                main_content = soup.select_one('#mw-content-text, #bodyContent, .content')
                if not main_content:
                    logging.error("No content found in the expected sections.")
                    return None
                text_content = ' '.join(p.get_text() for p in main_content.find_all(['p', 'li'], string=True))
                return text_content
        except Exception as e:
            logging.error(f"Error fetching URL content: {e}")
            return None

async def read_text_file(file_path):
    """Asynchronously reads text from a text file."""
    async with aiofiles.open(file_path, mode='r', encoding='utf-8') as file:
        text_content = await file.read()
    return text_content

async def read_pdf(file_path):
    """Asynchronously reads text from a PDF file."""
    def sync_read_pdf(path):
        try:
            with open(path, "rb") as file:
                reader = PyPDF2.PdfReader(file)
                return ' '.join(page.extract_text() for page in reader.pages if page.extract_text())
        except Exception as e:
            logging.error(f"Error reading PDF file: {e}")
            return None

    return await asyncio.to_thread(sync_read_pdf, file_path)

async def summarize_content(source, language):
    """Processes input source (URL, file, text) and outputs a summary in the specified language asynchronously."""
    print("Processing input...")
    text_content = None
    if source.startswith(('http://', 'https://')):
        print("Fetching content from URL...")
        text_content = await fetch_text_from_url(source)
    elif os.path.isfile(source):
        _, file_extension = os.path.splitext(source)
        if file_extension.lower() == '.pdf':
            print("Reading PDF...")
            text_content = await read_pdf(source)
        elif file_extension.lower() in ['.txt', '.text']:
            print("Reading text file...")
            text_content = await read_text_file(source)
        else:
            print("Unsupported file type")
            return
    else:
        print("Unsupported file type")
        return

    if text_content:
        print("Summarizing content...")
        summary = await invoke_model(text_content, language)
        print("\n--- Summary of the document ---\n")
        print(summary)
    else:
        print("No text found or unable to extract text from source.")

if __name__ == '__main__':
    if len(sys.argv) < 3:
        print("Usage: python script.py <file_path_or_url_or_text> <language>")
        print("Language should be 'ko' for Korean or 'en' for English.")
    else:
        source = sys.argv[1]
        language = sys.argv[2]
        asyncio.run(summarize_content(source, language))

```

run txt file (assume txt is a.txt)
```
Korean response : python pose_lang a.txt ko
English response : python pose_lang a.txt en
```

run pdf file (assume pdf is a.pdf)
```
Korean response : python pose_lang a.pdf ko
English response : python pose_lang a.pdf en
```

run url (assume url is wikepedia)
```
Korean response : python pose_lang url ko
English response : python pose_lang url en
```
I added additional Google Translator here. If you request an answer in Korean and the answer is in English sometimes for the lang hallucination, this function detects it and answers you in Korean.
Conversely, if you request a response in English and the response is in Korean for the lang hallucination, this function detects it and responds in English.

You can find both test results below on the section : Test Result2 for target lang response

### πŸ—žοΈ Configuration
The YAML configuration for this model:

```yaml
models:
  - model: NousResearch/Meta-Llama-3-8B
    # Base model providing a general foundation without specific parameters
  - model: NousResearch/Meta-Llama-3-8B-Instruct
    parameters:
      density: 0.60
      weight: 0.25
  - model: winglian/llama-3-8b-256k-PoSE
    parameters:
      density: 0.60
      weight: 0.20
  - model: Locutusque/Llama-3-Orca-1.0-8B
    parameters:
      density: 0.55
      weight: 0.15
  - model: abacusai/Llama-3-Smaug-8B
    parameters:
      density: 0.55
      weight: 0.15
  - model: beomi/Llama-3-Open-Ko-8B-Instruct-preview
    parameters:
      density: 0.55
      weight: 0.30

merge_method: dare_ties
base_model: NousResearch/Meta-Llama-3-8B
parameters:
  int8_mask: true
dtype: bfloat16
```

Test OS Condition

```

Hardware Overview:

      Model Name: MacBook Pro
      Model Identifier: MacBookPro18,2
      Chip: Apple M1 Max
      Total Number of Cores: 10 (8 performance and 2 efficiency)
      Memory: 64 GB
      System Firmware Version: 10151.101.3
      OS Loader Version: 10151.101.3

```

### 🎊 Test Result1 (Normal)

**SmartLlama-3-Ko-8B-256k-PoSE Summary Ability**

consideration

Long sentences seemed to summarize well, but I observed that answers came in English. And when I asked for it to be translated into Korean, I confirmed that it was translated well. The summary seems to work well, but you can take into account the fact that there are times when it cannot be summarized directly in Korean.

## Summary of Britney Spears on Wikipedia

[![Britney Spears Singer Wikipedia Summary](https://i.ibb.co/2600HbV/Screenshot-2024-05-02-at-11-52-58-AM.png)](https://ibb.co/7zxxL9M)

## Summary of Steve Jobs Text File

[![Steve Jobs Text File Summary](https://i.ibb.co/10tRCrj/Screenshot-2024-05-02-at-11-54-50-AM.png)](https://ibb.co/9pkyxbS)

## Summary of Jay Park on Wikipedia

[![Jay Park Wikipedia Summary](https://i.ibb.co/nmkpbCt/Screenshot-2024-05-02-at-1-33-30-PM.png)](https://ibb.co/g9gY3Vh)

### 🎊 Test Result2 (Target Language Summary Return)

**SmartLlama-3-Ko-8B-256k-PoSE Summary Ability**

consideration

I added additional Google Translator here. If you request an answer in Korean and the answer is in English, this function detects it and answers you in Korean.
Conversely, if you request a response in English and the response is in Korean, this function detects it and responds in English.

If you don't get a clear answer, try running it several times.

## Summary of economy pdf

```
python final2.py economy.pdf ko

# if you want english summary, en
```

[![Economy pdf Summary](https://i.ibb.co/QftXyWQ/Screenshot-2024-05-02-at-9-05-51-PM.png)](https://ibb.co/JKgCDYt)


## Summary of Steve Jobs Text File

```
python final2.py steve.txt ko

# if you want english summary, en
```

[![Steve Jobs Text File Summary](https://i.ibb.co/1nmqWxk/Screenshot-2024-05-02-at-8-57-20-PM.png)](https://ibb.co/PY6hH8d)

## Summary of Jay Park on Wikipedia

```
python final2.py https://en.wikipedia.org/wiki/Jay_Park ko 

# if you want english summary, en
```

[![Jay Park Wikipedia Summary](https://i.ibb.co/Ssk4tdY/Screenshot-2024-05-02-at-8-54-19-PM.png)](https://ibb.co/j6CPyW0)



**Test Source From**

[λ°•μž¬λ²” - wikipedia - EN](https://en.wikipedia.org/wiki/Jay_Park)

[λ°•μž¬λ²” - wikipedia - KR](https://ko.wikipedia.org/wiki/%EB%B0%95%EC%9E%AC%EB%B2%94)

[Britney Spears - wikipedia - EN](https://en.wikipedia.org/wiki/Britney_Spears)

[ν•œκ΅­μ€ν–‰ κ²½μ œμ „λ§ λ³΄κ³ μ„œ - KR](https://www.bok.or.kr/viewer/skin/doc.html?fn=202402290251197820.pdf&rs=/webview/result/P0002359/202402)

[Community member : Mr Han' steve jobs txt file]

### ⛑️ Test Issue
2024-05-02

```
If you use load_summarize_chain(), there will be repetition. -> community member Mr.Han issue

Is it a merge issue? He thinks the merge target may be the issue.

chain = load_summarize_chain(
     llm,
     chain_type='stuff',
     prompt=prompt,
     verbose=False
)
output_summary = chain.invoke(docs)

-> investigating for me how to solve.....
```

```
Mr.Han is investgating the symptoms
Your OS is using REDHAT. Even if I run the code using the LLAMA3 model provided by ollama, there is an error.

I wonder if I should wait a little longer for Red Hat...

<|eot_id|><|start_header_id|>assistant<|end_header_id|>, ... omitted
Ha ha, thanks for the chat! You too have a great day and happy summarizing if you need it again soon!<|eot_id|><|start_header_id|>assistant<|end_header_id|>

It's not a merge problem... I think it's a fundamental problem that doesn't fit the OS environment... so I'm sharing it with you. Is there anyone who has the same problem as me in redhat?

```