ashutosh1919 commited on
Commit
4445a9b
·
1 Parent(s): 3cb26fa

PPO model training on LunarLander-v2 environment

Browse files
PPO_Lunar_Lander_v1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13c99cf13c2f3fc4791c34da15495cab24029a87ee68459efe30d57697a486ce
3
+ size 147174
PPO_Lunar_Lander_v1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
PPO_Lunar_Lander_v1/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9312e1f040>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9312e1f0d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9312e1f160>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9312e1f1f0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f9312e1f280>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f9312e1f310>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9312e1f3a0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f9312e1f430>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9312e1f4c0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9312e1f550>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9312e1f5e0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f9312e1b5d0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1672873078522926481,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJovf72FzZw/ReA5vi6RC7/qFh48BlOwvAAAAAAAAAAAqveGPn12aT/Yd2A9B+udvpECFz9KzQE+AAAAAAAAAABtzBq+FRVIPwiyy70WC8a+bW7jvZ0tJD0AAAAAAAAAAGYoIbxuyyg/GBmHvHL8rL7arw09gSgHPQAAAAAAAAAAM3Neuw7lij3KWSs9DJQ8vhF8k71BvrE9AAAAAAAAAAAzK3s7Md4HPNb8gT0P8KG98KcNPRMOub0AAAAAAAAAAJp5E7qvrqE+9TVpvkMOoL6lAQm+uEXnPQAAAAAAAAAAjXecPeWW9z5Su42+8vS5vrvEz71NPn69AAAAAAAAAAAzo5e7z6lvPsrpFL52XKe+T3HCvU8gIL0AAAAAAAAAAJrKhjyBWUw/A07OvQ9l8r6/8/Y8uOURvAAAAAAAAAAA5vF4vXNvsD6GIYA90QODvuDDQDzA2y0+AAAAAAAAAADNHlG9bZYyPipwDT7Oj4u+9yybu2UKkD0AAAAAAAAAAACIkjzQl7c/1enhPrrVYT6qSyO8lVp8vAAAAAAAAAAAVo5jvgZwuj9oGSq/snyrvmS1Ar4qOo2+AAAAAAAAAABmpby8qDGwvM4D4zx2epa78XMZvlgrbLwAAIA/AACAPwA1/DzDeWe6kNHjt3NFTLJdkpa5e6sENwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVXxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIyeTUzrAOb0CUhpRSlIwBbJRNIAGMAXSUR0CS13bDMvAXdX2UKGgGaAloD0MIAOMZNHSvc0CUhpRSlGgVTakBaBZHQJLY4xASnLt1fZQoaAZoCWgPQwhaKQRySc5xQJSGlFKUaBVNFAFoFkdAktmsK9f1H3V9lChoBmgJaA9DCFe0Oc5t1nFAlIaUUpRoFU1bAWgWR0CS2xdadMCcdX2UKGgGaAloD0MIBHKJIw/XcUCUhpRSlGgVTQsBaBZHQJLbOLR8c+91fZQoaAZoCWgPQwjpZRTL7QVzQJSGlFKUaBVNHwFoFkdAktx7IPsiS3V9lChoBmgJaA9DCBMOvcXD/nFAlIaUUpRoFU1mAWgWR0CS3heLvTgEdX2UKGgGaAloD0MI43DmV/NsbkCUhpRSlGgVTSMBaBZHQJLfnhhpg1F1fZQoaAZoCWgPQwjkv0AQoJxxQJSGlFKUaBVL1GgWR0CS4EIH1OCYdX2UKGgGaAloD0MIf/YjReSLbUCUhpRSlGgVTQcBaBZHQJLge4e9zwN1fZQoaAZoCWgPQwgLCoMyDTpzQJSGlFKUaBVNCQFoFkdAkuDeUliSaHV9lChoBmgJaA9DCI9SCU9oMHJAlIaUUpRoFU02AWgWR0CS4QBl+VkddX2UKGgGaAloD0MItOkI4GadckCUhpRSlGgVTSkBaBZHQJLhNNi6QNl1fZQoaAZoCWgPQwgUs14MJXhxQJSGlFKUaBVNSwFoFkdAkuGr+o99t3V9lChoBmgJaA9DCIJXy53ZM3JAlIaUUpRoFU0GAWgWR0CS4zalk6LgdX2UKGgGaAloD0MIkpIehlbycUCUhpRSlGgVTTkBaBZHQJLkabNKRMh1fZQoaAZoCWgPQwhZbf5f9WVtQJSGlFKUaBVNFQFoFkdAkuTcbm2b5XV9lChoBmgJaA9DCHBBtiyfqHJAlIaUUpRoFU0GAWgWR0CS5XsfJV81dX2UKGgGaAloD0MIZr6Dn/jtcUCUhpRSlGgVS/BoFkdAkuaxysCDEnV9lChoBmgJaA9DCJwU5j2O+nJAlIaUUpRoFUvuaBZHQJLmvyy2QXB1fZQoaAZoCWgPQwjBxYoaTFFyQJSGlFKUaBVNAwFoFkdAkuloTj/+9HV9lChoBmgJaA9DCHMuxVWlfHBAlIaUUpRoFUvyaBZHQJLqUZXMhX91fZQoaAZoCWgPQwgUPfAxWMlxQJSGlFKUaBVL/mgWR0CS7am+CbtrdX2UKGgGaAloD0MIB7MJMCw8bkCUhpRSlGgVTZEBaBZHQJLuAYDTz/Z1fZQoaAZoCWgPQwjtuUxNghRyQJSGlFKUaBVNCAFoFkdAku7j06HTJHV9lChoBmgJaA9DCMPTK2UZOFRAlIaUUpRoFUuraBZHQJLvFb2USqV1fZQoaAZoCWgPQwjW4egqHTBxQJSGlFKUaBVNKQFoFkdAku9to371qXV9lChoBmgJaA9DCGsotRfRKnNAlIaUUpRoFU0UAWgWR0CS73ysjmjkdX2UKGgGaAloD0MIZ9E7FbADc0CUhpRSlGgVTSMBaBZHQJLwbOE/Spl1fZQoaAZoCWgPQwh40VeQpuJxQJSGlFKUaBVNLgFoFkdAkvFX5BTn73V9lChoBmgJaA9DCM8R+S6lIHJAlIaUUpRoFU1NAWgWR0CS8ara/RE4dX2UKGgGaAloD0MI/yPTodMBckCUhpRSlGgVTRMBaBZHQJLxxCD28I11fZQoaAZoCWgPQwj9MEJ4dLFxQJSGlFKUaBVL6mgWR0CS81o2n88+dX2UKGgGaAloD0MITPxR1FkJcECUhpRSlGgVTSkBaBZHQJL0kREnb7F1fZQoaAZoCWgPQwgW/DbE+KNwQJSGlFKUaBVNOQFoFkdAkvTEP6KtP3V9lChoBmgJaA9DCMBeYcH9E3NAlIaUUpRoFUv8aBZHQJL2uVY6nzh1fZQoaAZoCWgPQwibyw2G+jVxQJSGlFKUaBVNOgFoFkdAkvczI3irDXV9lChoBmgJaA9DCI2Y2edxEHNAlIaUUpRoFU0MAWgWR0CS+BnWJ79idX2UKGgGaAloD0MIAg02dZ7Sa0CUhpRSlGgVS+poFkdAkw0oNd7fHnV9lChoBmgJaA9DCD8buW5KjnBAlIaUUpRoFUv9aBZHQJMNkLBsQ/Z1fZQoaAZoCWgPQwhWgsXhTJRuQJSGlFKUaBVL6GgWR0CTDZovzvqkdX2UKGgGaAloD0MIlZ1+UJdgcUCUhpRSlGgVTQoBaBZHQJMO5DhLoOh1fZQoaAZoCWgPQwjBjv8CAR9wQJSGlFKUaBVNFQFoFkdAkw89rsSkCXV9lChoBmgJaA9DCISgo1Utx2tAlIaUUpRoFU0EAWgWR0CTD19AX2ugdX2UKGgGaAloD0MIB0Dc1aunckCUhpRSlGgVTSQBaBZHQJMPcFotcwB1fZQoaAZoCWgPQwjjT1Q2bANzQJSGlFKUaBVL/2gWR0CTD+6OHWSVdX2UKGgGaAloD0MIh/nyAiyocECUhpRSlGgVS9ZoFkdAkxCKp97Wu3V9lChoBmgJaA9DCHMrhNXY3G5AlIaUUpRoFU0aAWgWR0CTEL0JF9a2dX2UKGgGaAloD0MIUS6NX3h9bUCUhpRSlGgVTQkBaBZHQJMRKRp1zQx1fZQoaAZoCWgPQwhRiIBDqLFxQJSGlFKUaBVNCAFoFkdAkxG8495hSnV9lChoBmgJaA9DCAdgAyJEunFAlIaUUpRoFU1OAWgWR0CTEeLv1DjSdX2UKGgGaAloD0MImboru2BwckCUhpRSlGgVS+hoFkdAkxL4+r2g4HV9lChoBmgJaA9DCIPBNXf0gnFAlIaUUpRoFU0DAWgWR0CTEySi/O+qdX2UKGgGaAloD0MIOKPmq2RabkCUhpRSlGgVTRMBaBZHQJMTUysS00F1fZQoaAZoCWgPQwgn3CvzVlJwQJSGlFKUaBVL8mgWR0CTE/ydnTRZdX2UKGgGaAloD0MIARO4dXcScUCUhpRSlGgVTSUBaBZHQJMV+Po3aSN1fZQoaAZoCWgPQwjUtfY+lVByQJSGlFKUaBVL8mgWR0CTFgWhRIjGdX2UKGgGaAloD0MIu2OxTWpKcUCUhpRSlGgVTSsBaBZHQJMWNqIrOJN1fZQoaAZoCWgPQwjBWN/A5DlyQJSGlFKUaBVL9mgWR0CTFkmrKeTWdX2UKGgGaAloD0MI7GrylFUdcUCUhpRSlGgVTRYBaBZHQJMW0PhAGB51fZQoaAZoCWgPQwg+eO3Shk1uQJSGlFKUaBVNIQFoFkdAkxeyZF5OanV9lChoBmgJaA9DCFZI+Um1oXFAlIaUUpRoFUvvaBZHQJMYHsF+uvF1fZQoaAZoCWgPQwjxvFRszMZvQJSGlFKUaBVNHQFoFkdAkxjRzzVc2XV9lChoBmgJaA9DCNdoOdDDzHFAlIaUUpRoFUv6aBZHQJMZIwXZXdV1fZQoaAZoCWgPQwimfXN/9SNxQJSGlFKUaBVL4mgWR0CTGdEKmbb2dX2UKGgGaAloD0MIlrIMcaxWcUCUhpRSlGgVTRQBaBZHQJMaEd4mkWR1fZQoaAZoCWgPQwh8ZHPVPGlTQJSGlFKUaBVL1WgWR0CTGoTwDvE1dX2UKGgGaAloD0MIYye8BOfvcUCUhpRSlGgVTVABaBZHQJMai8dxQzl1fZQoaAZoCWgPQwgo1NNH4DRvQJSGlFKUaBVNEQFoFkdAkxtgDzRQanV9lChoBmgJaA9DCCKoGr0ae3FAlIaUUpRoFU0iAWgWR0CTHBoNutOmdX2UKGgGaAloD0MIlgm/1M+FcECUhpRSlGgVS+poFkdAkx2DRD1GsnV9lChoBmgJaA9DCBx79lzmWnJAlIaUUpRoFUvLaBZHQJMd95ooNNJ1fZQoaAZoCWgPQwiuKvuuyJRwQJSGlFKUaBVNAgFoFkdAkx4C+De0onV9lChoBmgJaA9DCNiDSfHxsnFAlIaUUpRoFUv9aBZHQJMeyeMAFPl1fZQoaAZoCWgPQwgplIWvrzNvQJSGlFKUaBVNIwFoFkdAkx804zabnXV9lChoBmgJaA9DCNv3qL9ebGxAlIaUUpRoFU0BAmgWR0CTH1tga3qidX2UKGgGaAloD0MIvhJIiV2MckCUhpRSlGgVS/toFkdAkyAQZKnNxHV9lChoBmgJaA9DCP66053nGXJAlIaUUpRoFU1CAWgWR0CTIFwRoRI0dX2UKGgGaAloD0MIhzWVRSG4ckCUhpRSlGgVS+toFkdAkyE4JVsDXHV9lChoBmgJaA9DCD22ZcDZXHNAlIaUUpRoFUvhaBZHQJMho0gr6Lx1fZQoaAZoCWgPQwgyOiAJO/5wQJSGlFKUaBVNAgFoFkdAkyIuHJtBOnV9lChoBmgJaA9DCESmfAiqTXNAlIaUUpRoFU07AWgWR0CTIqcsDnvEdX2UKGgGaAloD0MI1ub/VcducUCUhpRSlGgVS9hoFkdAkyLxFd9lVnV9lChoBmgJaA9DCHgoCvQJrW1AlIaUUpRoFU1VAWgWR0CTI9EP1+RYdX2UKGgGaAloD0MIqbwd4fTncECUhpRSlGgVTTwBaBZHQJMkf1yvLYB1fZQoaAZoCWgPQwg+QPflzIZwQJSGlFKUaBVL+GgWR0CTJVLJjlPrdX2UKGgGaAloD0MI071O6ovhckCUhpRSlGgVTQ4BaBZHQJMmmQjlgc91fZQoaAZoCWgPQwhxGw3grZJxQJSGlFKUaBVNGwFoFkdAkycWP91loXV9lChoBmgJaA9DCAFRMGPKF3FAlIaUUpRoFUv3aBZHQJMnLzreImB1fZQoaAZoCWgPQwgBF2TLcnlxQJSGlFKUaBVNCwFoFkdAkydIqbz9THV9lChoBmgJaA9DCHP0+L1NIXFAlIaUUpRoFU14AWgWR0CTJ3LCN0eVdX2UKGgGaAloD0MI36mAe57AcUCUhpRSlGgVTQEBaBZHQJMoMDB/I811fZQoaAZoCWgPQwgF/BpJAtlsQJSGlFKUaBVNAQFoFkdAkyhzziCJ43V9lChoBmgJaA9DCKHa4EQ0v3JAlIaUUpRoFUvvaBZHQJMpLCm/Fit1fZQoaAZoCWgPQwjjGp/JfolxQJSGlFKUaBVNQwFoFkdAkylDHCGetnV9lChoBmgJaA9DCCmTGtrAa3JAlIaUUpRoFU0LAWgWR0CTKY7e2uxKdX2UKGgGaAloD0MI1c+bilSkcECUhpRSlGgVS/toFkdAkyoFstTUAnV9lChoBmgJaA9DCFBQilYunHFAlIaUUpRoFUv8aBZHQJMqhAqur6t1fZQoaAZoCWgPQwgbuW5KeXhTQJSGlFKUaBVLd2gWR0CTKp4HX2/SdX2UKGgGaAloD0MIOe6UDtZXcUCUhpRSlGgVTRIBaBZHQJMrToMa0hN1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
PPO_Lunar_Lander_v1/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69016c3e013e2ccf9890d1ad39d4f7208733a7bcbf9dfbbe1f43070203c200f4
3
+ size 87929
PPO_Lunar_Lander_v1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a754b02bdc6a85c52064588e45a9d0c03cb66cc65c08d709f65e8a5159cd44fb
3
+ size 43201
PPO_Lunar_Lander_v1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
PPO_Lunar_Lander_v1/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 255.29 +/- 18.92
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9312e1f040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9312e1f0d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9312e1f160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9312e1f1f0>", "_build": "<function ActorCriticPolicy._build at 0x7f9312e1f280>", "forward": "<function ActorCriticPolicy.forward at 0x7f9312e1f310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9312e1f3a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9312e1f430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9312e1f4c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9312e1f550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9312e1f5e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9312e1b5d0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672873078522926481, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJovf72FzZw/ReA5vi6RC7/qFh48BlOwvAAAAAAAAAAAqveGPn12aT/Yd2A9B+udvpECFz9KzQE+AAAAAAAAAABtzBq+FRVIPwiyy70WC8a+bW7jvZ0tJD0AAAAAAAAAAGYoIbxuyyg/GBmHvHL8rL7arw09gSgHPQAAAAAAAAAAM3Neuw7lij3KWSs9DJQ8vhF8k71BvrE9AAAAAAAAAAAzK3s7Md4HPNb8gT0P8KG98KcNPRMOub0AAAAAAAAAAJp5E7qvrqE+9TVpvkMOoL6lAQm+uEXnPQAAAAAAAAAAjXecPeWW9z5Su42+8vS5vrvEz71NPn69AAAAAAAAAAAzo5e7z6lvPsrpFL52XKe+T3HCvU8gIL0AAAAAAAAAAJrKhjyBWUw/A07OvQ9l8r6/8/Y8uOURvAAAAAAAAAAA5vF4vXNvsD6GIYA90QODvuDDQDzA2y0+AAAAAAAAAADNHlG9bZYyPipwDT7Oj4u+9yybu2UKkD0AAAAAAAAAAACIkjzQl7c/1enhPrrVYT6qSyO8lVp8vAAAAAAAAAAAVo5jvgZwuj9oGSq/snyrvmS1Ar4qOo2+AAAAAAAAAABmpby8qDGwvM4D4zx2epa78XMZvlgrbLwAAIA/AACAPwA1/DzDeWe6kNHjt3NFTLJdkpa5e6sENwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVXxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIyeTUzrAOb0CUhpRSlIwBbJRNIAGMAXSUR0CS13bDMvAXdX2UKGgGaAloD0MIAOMZNHSvc0CUhpRSlGgVTakBaBZHQJLY4xASnLt1fZQoaAZoCWgPQwhaKQRySc5xQJSGlFKUaBVNFAFoFkdAktmsK9f1H3V9lChoBmgJaA9DCFe0Oc5t1nFAlIaUUpRoFU1bAWgWR0CS2xdadMCcdX2UKGgGaAloD0MIBHKJIw/XcUCUhpRSlGgVTQsBaBZHQJLbOLR8c+91fZQoaAZoCWgPQwjpZRTL7QVzQJSGlFKUaBVNHwFoFkdAktx7IPsiS3V9lChoBmgJaA9DCBMOvcXD/nFAlIaUUpRoFU1mAWgWR0CS3heLvTgEdX2UKGgGaAloD0MI43DmV/NsbkCUhpRSlGgVTSMBaBZHQJLfnhhpg1F1fZQoaAZoCWgPQwjkv0AQoJxxQJSGlFKUaBVL1GgWR0CS4EIH1OCYdX2UKGgGaAloD0MIf/YjReSLbUCUhpRSlGgVTQcBaBZHQJLge4e9zwN1fZQoaAZoCWgPQwgLCoMyDTpzQJSGlFKUaBVNCQFoFkdAkuDeUliSaHV9lChoBmgJaA9DCI9SCU9oMHJAlIaUUpRoFU02AWgWR0CS4QBl+VkddX2UKGgGaAloD0MItOkI4GadckCUhpRSlGgVTSkBaBZHQJLhNNi6QNl1fZQoaAZoCWgPQwgUs14MJXhxQJSGlFKUaBVNSwFoFkdAkuGr+o99t3V9lChoBmgJaA9DCIJXy53ZM3JAlIaUUpRoFU0GAWgWR0CS4zalk6LgdX2UKGgGaAloD0MIkpIehlbycUCUhpRSlGgVTTkBaBZHQJLkabNKRMh1fZQoaAZoCWgPQwhZbf5f9WVtQJSGlFKUaBVNFQFoFkdAkuTcbm2b5XV9lChoBmgJaA9DCHBBtiyfqHJAlIaUUpRoFU0GAWgWR0CS5XsfJV81dX2UKGgGaAloD0MIZr6Dn/jtcUCUhpRSlGgVS/BoFkdAkuaxysCDEnV9lChoBmgJaA9DCJwU5j2O+nJAlIaUUpRoFUvuaBZHQJLmvyy2QXB1fZQoaAZoCWgPQwjBxYoaTFFyQJSGlFKUaBVNAwFoFkdAkuloTj/+9HV9lChoBmgJaA9DCHMuxVWlfHBAlIaUUpRoFUvyaBZHQJLqUZXMhX91fZQoaAZoCWgPQwgUPfAxWMlxQJSGlFKUaBVL/mgWR0CS7am+CbtrdX2UKGgGaAloD0MIB7MJMCw8bkCUhpRSlGgVTZEBaBZHQJLuAYDTz/Z1fZQoaAZoCWgPQwjtuUxNghRyQJSGlFKUaBVNCAFoFkdAku7j06HTJHV9lChoBmgJaA9DCMPTK2UZOFRAlIaUUpRoFUuraBZHQJLvFb2USqV1fZQoaAZoCWgPQwjW4egqHTBxQJSGlFKUaBVNKQFoFkdAku9to371qXV9lChoBmgJaA9DCGsotRfRKnNAlIaUUpRoFU0UAWgWR0CS73ysjmjkdX2UKGgGaAloD0MIZ9E7FbADc0CUhpRSlGgVTSMBaBZHQJLwbOE/Spl1fZQoaAZoCWgPQwh40VeQpuJxQJSGlFKUaBVNLgFoFkdAkvFX5BTn73V9lChoBmgJaA9DCM8R+S6lIHJAlIaUUpRoFU1NAWgWR0CS8ara/RE4dX2UKGgGaAloD0MI/yPTodMBckCUhpRSlGgVTRMBaBZHQJLxxCD28I11fZQoaAZoCWgPQwj9MEJ4dLFxQJSGlFKUaBVL6mgWR0CS81o2n88+dX2UKGgGaAloD0MITPxR1FkJcECUhpRSlGgVTSkBaBZHQJL0kREnb7F1fZQoaAZoCWgPQwgW/DbE+KNwQJSGlFKUaBVNOQFoFkdAkvTEP6KtP3V9lChoBmgJaA9DCMBeYcH9E3NAlIaUUpRoFUv8aBZHQJL2uVY6nzh1fZQoaAZoCWgPQwibyw2G+jVxQJSGlFKUaBVNOgFoFkdAkvczI3irDXV9lChoBmgJaA9DCI2Y2edxEHNAlIaUUpRoFU0MAWgWR0CS+BnWJ79idX2UKGgGaAloD0MIAg02dZ7Sa0CUhpRSlGgVS+poFkdAkw0oNd7fHnV9lChoBmgJaA9DCD8buW5KjnBAlIaUUpRoFUv9aBZHQJMNkLBsQ/Z1fZQoaAZoCWgPQwhWgsXhTJRuQJSGlFKUaBVL6GgWR0CTDZovzvqkdX2UKGgGaAloD0MIlZ1+UJdgcUCUhpRSlGgVTQoBaBZHQJMO5DhLoOh1fZQoaAZoCWgPQwjBjv8CAR9wQJSGlFKUaBVNFQFoFkdAkw89rsSkCXV9lChoBmgJaA9DCISgo1Utx2tAlIaUUpRoFU0EAWgWR0CTD19AX2ugdX2UKGgGaAloD0MIB0Dc1aunckCUhpRSlGgVTSQBaBZHQJMPcFotcwB1fZQoaAZoCWgPQwjjT1Q2bANzQJSGlFKUaBVL/2gWR0CTD+6OHWSVdX2UKGgGaAloD0MIh/nyAiyocECUhpRSlGgVS9ZoFkdAkxCKp97Wu3V9lChoBmgJaA9DCHMrhNXY3G5AlIaUUpRoFU0aAWgWR0CTEL0JF9a2dX2UKGgGaAloD0MIUS6NX3h9bUCUhpRSlGgVTQkBaBZHQJMRKRp1zQx1fZQoaAZoCWgPQwhRiIBDqLFxQJSGlFKUaBVNCAFoFkdAkxG8495hSnV9lChoBmgJaA9DCAdgAyJEunFAlIaUUpRoFU1OAWgWR0CTEeLv1DjSdX2UKGgGaAloD0MImboru2BwckCUhpRSlGgVS+hoFkdAkxL4+r2g4HV9lChoBmgJaA9DCIPBNXf0gnFAlIaUUpRoFU0DAWgWR0CTEySi/O+qdX2UKGgGaAloD0MIOKPmq2RabkCUhpRSlGgVTRMBaBZHQJMTUysS00F1fZQoaAZoCWgPQwgn3CvzVlJwQJSGlFKUaBVL8mgWR0CTE/ydnTRZdX2UKGgGaAloD0MIARO4dXcScUCUhpRSlGgVTSUBaBZHQJMV+Po3aSN1fZQoaAZoCWgPQwjUtfY+lVByQJSGlFKUaBVL8mgWR0CTFgWhRIjGdX2UKGgGaAloD0MIu2OxTWpKcUCUhpRSlGgVTSsBaBZHQJMWNqIrOJN1fZQoaAZoCWgPQwjBWN/A5DlyQJSGlFKUaBVL9mgWR0CTFkmrKeTWdX2UKGgGaAloD0MI7GrylFUdcUCUhpRSlGgVTRYBaBZHQJMW0PhAGB51fZQoaAZoCWgPQwg+eO3Shk1uQJSGlFKUaBVNIQFoFkdAkxeyZF5OanV9lChoBmgJaA9DCFZI+Um1oXFAlIaUUpRoFUvvaBZHQJMYHsF+uvF1fZQoaAZoCWgPQwjxvFRszMZvQJSGlFKUaBVNHQFoFkdAkxjRzzVc2XV9lChoBmgJaA9DCNdoOdDDzHFAlIaUUpRoFUv6aBZHQJMZIwXZXdV1fZQoaAZoCWgPQwimfXN/9SNxQJSGlFKUaBVL4mgWR0CTGdEKmbb2dX2UKGgGaAloD0MIlrIMcaxWcUCUhpRSlGgVTRQBaBZHQJMaEd4mkWR1fZQoaAZoCWgPQwh8ZHPVPGlTQJSGlFKUaBVL1WgWR0CTGoTwDvE1dX2UKGgGaAloD0MIYye8BOfvcUCUhpRSlGgVTVABaBZHQJMai8dxQzl1fZQoaAZoCWgPQwgo1NNH4DRvQJSGlFKUaBVNEQFoFkdAkxtgDzRQanV9lChoBmgJaA9DCCKoGr0ae3FAlIaUUpRoFU0iAWgWR0CTHBoNutOmdX2UKGgGaAloD0MIlgm/1M+FcECUhpRSlGgVS+poFkdAkx2DRD1GsnV9lChoBmgJaA9DCBx79lzmWnJAlIaUUpRoFUvLaBZHQJMd95ooNNJ1fZQoaAZoCWgPQwiuKvuuyJRwQJSGlFKUaBVNAgFoFkdAkx4C+De0onV9lChoBmgJaA9DCNiDSfHxsnFAlIaUUpRoFUv9aBZHQJMeyeMAFPl1fZQoaAZoCWgPQwgplIWvrzNvQJSGlFKUaBVNIwFoFkdAkx804zabnXV9lChoBmgJaA9DCNv3qL9ebGxAlIaUUpRoFU0BAmgWR0CTH1tga3qidX2UKGgGaAloD0MIvhJIiV2MckCUhpRSlGgVS/toFkdAkyAQZKnNxHV9lChoBmgJaA9DCP66053nGXJAlIaUUpRoFU1CAWgWR0CTIFwRoRI0dX2UKGgGaAloD0MIhzWVRSG4ckCUhpRSlGgVS+toFkdAkyE4JVsDXHV9lChoBmgJaA9DCD22ZcDZXHNAlIaUUpRoFUvhaBZHQJMho0gr6Lx1fZQoaAZoCWgPQwgyOiAJO/5wQJSGlFKUaBVNAgFoFkdAkyIuHJtBOnV9lChoBmgJaA9DCESmfAiqTXNAlIaUUpRoFU07AWgWR0CTIqcsDnvEdX2UKGgGaAloD0MI1ub/VcducUCUhpRSlGgVS9hoFkdAkyLxFd9lVnV9lChoBmgJaA9DCHgoCvQJrW1AlIaUUpRoFU1VAWgWR0CTI9EP1+RYdX2UKGgGaAloD0MIqbwd4fTncECUhpRSlGgVTTwBaBZHQJMkf1yvLYB1fZQoaAZoCWgPQwg+QPflzIZwQJSGlFKUaBVL+GgWR0CTJVLJjlPrdX2UKGgGaAloD0MI071O6ovhckCUhpRSlGgVTQ4BaBZHQJMmmQjlgc91fZQoaAZoCWgPQwhxGw3grZJxQJSGlFKUaBVNGwFoFkdAkycWP91loXV9lChoBmgJaA9DCAFRMGPKF3FAlIaUUpRoFUv3aBZHQJMnLzreImB1fZQoaAZoCWgPQwgBF2TLcnlxQJSGlFKUaBVNCwFoFkdAkydIqbz9THV9lChoBmgJaA9DCHP0+L1NIXFAlIaUUpRoFU14AWgWR0CTJ3LCN0eVdX2UKGgGaAloD0MI36mAe57AcUCUhpRSlGgVTQEBaBZHQJMoMDB/I811fZQoaAZoCWgPQwgF/BpJAtlsQJSGlFKUaBVNAQFoFkdAkyhzziCJ43V9lChoBmgJaA9DCKHa4EQ0v3JAlIaUUpRoFUvvaBZHQJMpLCm/Fit1fZQoaAZoCWgPQwjjGp/JfolxQJSGlFKUaBVNQwFoFkdAkylDHCGetnV9lChoBmgJaA9DCCmTGtrAa3JAlIaUUpRoFU0LAWgWR0CTKY7e2uxKdX2UKGgGaAloD0MI1c+bilSkcECUhpRSlGgVS/toFkdAkyoFstTUAnV9lChoBmgJaA9DCFBQilYunHFAlIaUUpRoFUv8aBZHQJMqhAqur6t1fZQoaAZoCWgPQwgbuW5KeXhTQJSGlFKUaBVLd2gWR0CTKp4HX2/SdX2UKGgGaAloD0MIOe6UDtZXcUCUhpRSlGgVTRIBaBZHQJMrToMa0hN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (239 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 255.28764106204795, "std_reward": 18.918558862305904, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-04T23:23:30.781629"}