uploading a PPO solution to lunar lander
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +95 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 246.18 +/- 24.25
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe44e136dc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe44e136e50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe44e136ee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe44e136f70>", "_build": "<function ActorCriticPolicy._build at 0x7fe44e13a040>", "forward": "<function ActorCriticPolicy.forward at 0x7fe44e13a0d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe44e13a160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe44e13a1f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe44e13a280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe44e13a310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe44e13a3a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe44e13a430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe44e1b29f0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 262144, "_total_timesteps": 250000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673804379802212085, "learning_rate": 0.0003, "tensorboard_log": "./", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOYZNL3D9Vq6heqauhHnR7Xbqhu7aLuyOQAAgD8AAIA/cwHzva6t/LpAe/E6dmocOPLO4TvG9h66AACAPwAAgD8zvj49jzZhut4zDjzZlCyzVV2WOuYCcLMAAIA/AACAP3OXmL32kDO6DzWqO03/eTVmIYM7e4xtNAAAgD8AAIA/TZKGPbgms7lI5VU82o5utsqrPTvuzWq1AACAPwAAgD9m/109e86Pui63jDlBuoc0UlfTOUboorgAAIA/AACAP5qpZjuuEZy6EuEOPOBSzLVcaLM6OzXCtAAAgD8AAIA/gNMsvfaUKboOBAK76X5fN7VWv7mI/6u2AACAPwAAgD/KBYC+FY4XP+zOFL6UWdC+umJ8vo/EB74AAAAAAAAAAGNBbL4KDVE8xqGKPIu0VbqfXNq9RjxOOwAAgD8AAIA/QGfpvTJNVT/CVxm+8qT3vi50172vniY9AAAAAAAAAAAAuuo8KVQguhvqZbqtNpq2Dfp+O9DFhTkAAIA/AACAP2bXsjz2JC26+p1LPOcYJbb8x2Q7Lj4ZtQAAgD8AAIA/TSJ/PoWL17tiXg67TT1mODPJKr3f4Cc6AACAPwAAgD8zvYc8XAMYumHrmTtyJCg3rbA7OLCKFjYAAIA/AACAP2YygL0pQD261ilYOpDqqbQndaw76ifcswAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIPu3w1+RoYUCUhpRSlIwBbJRN6AOMAXSUR0CC6XF1B+nZdX2UKGgGaAloD0MI0VynkZZ9XECUhpRSlGgVTegDaBZHQILq4vWYnfF1fZQoaAZoCWgPQwiI1R9hGGliQJSGlFKUaBVN6ANoFkdAguyXDm8ujHV9lChoBmgJaA9DCCkmb4CZRUhAlIaUUpRoFUusaBZHQILt7Jr+Hah1fZQoaAZoCWgPQwi0kIDRZfVjQJSGlFKUaBVN6ANoFkdAgu8LcCYCyXV9lChoBmgJaA9DCD7shQK2N1xAlIaUUpRoFU3oA2gWR0CC79VGTcIrdX2UKGgGaAloD0MISl0yjpFMGUCUhpRSlGgVS7hoFkdAgvWccENe+nV9lChoBmgJaA9DCHtrYKsEFUJAlIaUUpRoFUvAaBZHQIL4UXm/3391fZQoaAZoCWgPQwgDJJpAkR1hQJSGlFKUaBVN6ANoFkdAgvlqYRdyDXV9lChoBmgJaA9DCHfYRGYu+ltAlIaUUpRoFU3oA2gWR0CDTlrt3OfNdX2UKGgGaAloD0MICfoLPWL4akCUhpRSlGgVTeICaBZHQINSCLMs6JZ1fZQoaAZoCWgPQwg75Ga4AYBaQJSGlFKUaBVN6ANoFkdAg1YwyRB/qnV9lChoBmgJaA9DCFmkiXeAEFtAlIaUUpRoFU3oA2gWR0CDXQ5MlC1JdX2UKGgGaAloD0MIXU90XfiMYkCUhpRSlGgVTegDaBZHQINfbqfOD8N1fZQoaAZoCWgPQwj8xAH0e25hQJSGlFKUaBVN6ANoFkdAg2arxqfvnnV9lChoBmgJaA9DCDj4wmSqe2JAlIaUUpRoFU0nA2gWR0CDb2YAsCkodX2UKGgGaAloD0MIrMjogKRRZECUhpRSlGgVTegDaBZHQIN1O8f3evZ1fZQoaAZoCWgPQwhs6dFUTxpdQJSGlFKUaBVN6ANoFkdAg3qbblA/s3V9lChoBmgJaA9DCIEHBhC+o2BAlIaUUpRoFU3oA2gWR0CDe8/yoXKsdX2UKGgGaAloD0MI29styQGbY0CUhpRSlGgVTegDaBZHQIN/S5Xlr/N1fZQoaAZoCWgPQwhy3CkdrP1AQJSGlFKUaBVLuGgWR0CDgBvhIe5ndX2UKGgGaAloD0MIQl4PJkV+YECUhpRSlGgVTegDaBZHQIOCFxCIDYB1fZQoaAZoCWgPQwjJrrSM1NhcQJSGlFKUaBVN6ANoFkdAg4L5CfHxSnV9lChoBmgJaA9DCJIiMqziGThAlIaUUpRoFUvXaBZHQIOHgKhL5AR1fZQoaAZoCWgPQwh1IVZ/hINeQJSGlFKUaBVN6ANoFkdAg4mRwqAjIXV9lChoBmgJaA9DCM9Lxca8F2NAlIaUUpRoFU3oA2gWR0CDjGZCv5gxdX2UKGgGaAloD0MIueLiqFylYUCUhpRSlGgVTegDaBZHQIONhbGFSKp1fZQoaAZoCWgPQwhzucFQh0BcQJSGlFKUaBVN6ANoFkdAg+KhpQDV6XV9lChoBmgJaA9DCGxCWmPQlV5AlIaUUpRoFU3oA2gWR0CD5ibb1yvLdX2UKGgGaAloD0MIX1yq0pbeY0CUhpRSlGgVTegDaBZHQIPqV6ol2Nh1fZQoaAZoCWgPQwgAcOzZc51jQJSGlFKUaBVN6ANoFkdAg/Cdpyp71XV9lChoBmgJaA9DCCDSb18H3l5AlIaUUpRoFU3oA2gWR0CD8rwCKaXsdX2UKGgGaAloD0MIXpz4akdjZECUhpRSlGgVTegDaBZHQIP53llsguB1fZQoaAZoCWgPQwhpGan3VIJGQJSGlFKUaBVLv2gWR0CD+88kD6nBdX2UKGgGaAloD0MIxJRIohfnYkCUhpRSlGgVTegDaBZHQIQNzSgGr0d1fZQoaAZoCWgPQwhRoE/kyYxhQJSGlFKUaBVN6ANoFkdAhA9Al4TsY3V9lChoBmgJaA9DCOY9zjRhCxZAlIaUUpRoFUvZaBZHQIQQquEEkjZ1fZQoaAZoCWgPQwh6OIHptB9iQJSGlFKUaBVN6ANoFkdAhBM/5+H8CXV9lChoBmgJaA9DCIUJo1nZ5j5AlIaUUpRoFU3oA2gWR0CEFDbWVeKLdX2UKGgGaAloD0MIhnZOs0AFR0CUhpRSlGgVTegDaBZHQIQWpRTCLuR1fZQoaAZoCWgPQwh/T6xTZYxgQJSGlFKUaBVN6ANoFkdAhBe59mYjS3V9lChoBmgJaA9DCAdF8wAWmWJAlIaUUpRoFU3oA2gWR0CEHL/WDpTudX2UKGgGaAloD0MI5e5zfLTcQUCUhpRSlGgVS49oFkdAhB3kjX4CZHV9lChoBmgJaA9DCDv7yoN08GFAlIaUUpRoFU3oA2gWR0CEHx62v0ROdX2UKGgGaAloD0MIfJkoQurJWECUhpRSlGgVTegDaBZHQIQikhkiD/V1fZQoaAZoCWgPQwiiXYWUnwZYQJSGlFKUaBVN6ANoFkdAhCPeDWbw0HV9lChoBmgJaA9DCGFwzR19eGdAlIaUUpRoFU3mAmgWR0CENhJ9RaX8dX2UKGgGaAloD0MIixagbbWSYECUhpRSlGgVTegDaBZHQIR7XxWkrPN1fZQoaAZoCWgPQwiLTwEwHsJlQJSGlFKUaBVN6ANoFkdAhH8FenhsInV9lChoBmgJaA9DCCHKF7SQQmhAlIaUUpRoFU3aA2gWR0CEij04BFNMdX2UKGgGaAloD0MIMCsU6f6BYECUhpRSlGgVTegDaBZHQISS1NWU8mt1fZQoaAZoCWgPQwjgMNEgBVNbQJSGlFKUaBVN6ANoFkdAhKgznA6+4HV9lChoBmgJaA9DCAn/ImhMHGJAlIaUUpRoFU3oA2gWR0CEqX4YaYNRdX2UKGgGaAloD0MIwHtHjQkJYECUhpRSlGgVTegDaBZHQIStWV1Oj7B1fZQoaAZoCWgPQwhafuAqT5pfQJSGlFKUaBVN6ANoFkdAhK5JAUtZm3V9lChoBmgJaA9DCGlRn+QO0mdAlIaUUpRoFU3oA2gWR0CEsIEeyRjjdX2UKGgGaAloD0MIObcJ98paYkCUhpRSlGgVTegDaBZHQISxam8/Uvx1fZQoaAZoCWgPQwhZwW9DDEtiQJSGlFKUaBVN6ANoFkdAhLal+Vkc0nV9lChoBmgJaA9DCJjg1AcSNWBAlIaUUpRoFU3oA2gWR0CEt9mjj7yhdX2UKGgGaAloD0MIrK3YX3b5SkCUhpRSlGgVS59oFkdAhLfyfcvdunV9lChoBmgJaA9DCMN+T6zTW2FAlIaUUpRoFU3oA2gWR0CEuNkBCD28dX2UKGgGaAloD0MIXwmkxK4tYkCUhpRSlGgVTegDaBZHQIS7cl5WzWx1fZQoaAZoCWgPQwj+DG/W4IVlQJSGlFKUaBVN6ANoFkdAhLxv69CeE3V9lChoBmgJaA9DCDXuzW+YiEFAlIaUUpRoFUuqaBZHQIS9yBf8dgh1fZQoaAZoCWgPQwjct1onrpJmQJSGlFKUaBVN6ANoFkdAhMvCVSn+AHV9lChoBmgJaA9DCE62gTtQhy9AlIaUUpRoFUu0aBZHQITMopKBd2R1fZQoaAZoCWgPQwhhM8AF2cJlQJSGlFKUaBVN6ANoFkdAhQ4F/x2B8XV9lChoBmgJaA9DCC8Zx0h2KWJAlIaUUpRoFU3oA2gWR0CFER9aUzKtdX2UKGgGaAloD0MIqI3qdKCrZUCUhpRSlGgVTegDaBZHQIUbHUlRgqp1fZQoaAZoCWgPQwgllSnmIAQxQJSGlFKUaBVLyGgWR0CFIj8MNMGpdX2UKGgGaAloD0MIF0omp3bBYUCUhpRSlGgVTegDaBZHQIUjRHTZxrB1fZQoaAZoCWgPQwhMxjGSPZFlQJSGlFKUaBVN6ANoFkdAhTg2/i5uqHV9lChoBmgJaA9DCN6Th4VaYmBAlIaUUpRoFU3oA2gWR0CFPbI8QqZudX2UKGgGaAloD0MIM4rlllbhX0CUhpRSlGgVTegDaBZHQIU+xy4nWrh1fZQoaAZoCWgPQwh2+daHdfZhQJSGlFKUaBVN6ANoFkdAhUI8c2itaXV9lChoBmgJaA9DCC3RWWaRhWBAlIaUUpRoFU3oA2gWR0CFR9DziCJ5dX2UKGgGaAloD0MIFsH/VjIIYkCUhpRSlGgVTegDaBZHQIVI9cQiA2B1fZQoaAZoCWgPQwjEBaBRupxnQJSGlFKUaBVN6ANoFkdAhUkVeSjgynV9lChoBmgJaA9DCEz6eyk8zWJAlIaUUpRoFU3oA2gWR0CFShMWXTmXdX2UKGgGaAloD0MInMQgsPLXZ0CUhpRSlGgVTegDaBZHQIVM0+X7cfx1fZQoaAZoCWgPQwgEATJ07KlfQJSGlFKUaBVN6ANoFkdAhU4F0YCQtHV9lChoBmgJaA9DCGhCk8SSsvi/lIaUUpRoFUvFaBZHQIVO5QvYe1d1fZQoaAZoCWgPQwiGrdnKS/pfQJSGlFKUaBVN6ANoFkdAhV0gwGnn+3V9lChoBmgJaA9DCLggW5avCGJAlIaUUpRoFU3oA2gWR0CFXjlHz6JqdX2UKGgGaAloD0MIPq4NFeMrYECUhpRSlGgVTegDaBZHQIWi3dsSCe51fZQoaAZoCWgPQwjQuHAgJBhiQJSGlFKUaBVN6ANoFkdAhbGMQEpy63V9lChoBmgJaA9DCGgFhqxuLVxAlIaUUpRoFU3oA2gWR0CFuJsJIDoydX2UKGgGaAloD0MI24e85epDYECUhpRSlGgVTegDaBZHQIW5jm4iHIp1fZQoaAZoCWgPQwhGJXUCGuJjQJSGlFKUaBVN6ANoFkdAhczmJWNm2HV9lChoBmgJaA9DCNO/JJWpSWRAlIaUUpRoFU3oA2gWR0CF0utaIN3GdX2UKGgGaAloD0MI5PVgUnxSWkCUhpRSlGgVTegDaBZHQIXWeEIw/Ph1fZQoaAZoCWgPQwhE/MOWHuNeQJSGlFKUaBVN6ANoFkdAhdvMz/IbO3V9lChoBmgJaA9DCAiPNo5YeVpAlIaUUpRoFU3oA2gWR0CF3OcrAgxKdX2UKGgGaAloD0MI4Xt/g/boYECUhpRSlGgVTegDaBZHQIXdAwPAfuF1fZQoaAZoCWgPQwgH0VrR5tFhQJSGlFKUaBVN6ANoFkdAhd4F23azvHV9lChoBmgJaA9DCBx5ILLIt2NAlIaUUpRoFU3oA2gWR0CF4QEvCdjHdX2UKGgGaAloD0MIey5Tk2BFYUCUhpRSlGgVTegDaBZHQIXiNAHE/B51fZQoaAZoCWgPQwhKYHMOHglkQJSGlFKUaBVN6ANoFkdAheNRoZhrnHV9lChoBmgJaA9DCN1bkZggIGdAlIaUUpRoFU3oA2gWR0CF8Vjd56dEdX2UKGgGaAloD0MIylTBqKQdX0CUhpRSlGgVTegDaBZHQIXyXegte2N1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 160, "n_steps": 1024, "gamma": 0.998, "gae_lambda": 0.99, "ent_coef": 0.005, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.79.1-microsoft-standard-WSL2-x86_64-with-glibc2.29 # 1 SMP Wed Nov 23 01:01:46 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.9.1+cu111", "GPU Enabled": "True", "Numpy": "1.23.4", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4f9c46b8b1fbe84cd75300525d5187e3cafedde2c66cc7165230934c58c5d213
|
3 |
+
size 144329
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fe44e136dc0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe44e136e50>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe44e136ee0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe44e136f70>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fe44e13a040>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fe44e13a0d0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe44e13a160>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe44e13a1f0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fe44e13a280>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe44e13a310>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe44e13a3a0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe44e13a430>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7fe44e1b29f0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 262144,
|
47 |
+
"_total_timesteps": 250000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1673804379802212085,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": "./",
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOYZNL3D9Vq6heqauhHnR7Xbqhu7aLuyOQAAgD8AAIA/cwHzva6t/LpAe/E6dmocOPLO4TvG9h66AACAPwAAgD8zvj49jzZhut4zDjzZlCyzVV2WOuYCcLMAAIA/AACAP3OXmL32kDO6DzWqO03/eTVmIYM7e4xtNAAAgD8AAIA/TZKGPbgms7lI5VU82o5utsqrPTvuzWq1AACAPwAAgD9m/109e86Pui63jDlBuoc0UlfTOUboorgAAIA/AACAP5qpZjuuEZy6EuEOPOBSzLVcaLM6OzXCtAAAgD8AAIA/gNMsvfaUKboOBAK76X5fN7VWv7mI/6u2AACAPwAAgD/KBYC+FY4XP+zOFL6UWdC+umJ8vo/EB74AAAAAAAAAAGNBbL4KDVE8xqGKPIu0VbqfXNq9RjxOOwAAgD8AAIA/QGfpvTJNVT/CVxm+8qT3vi50172vniY9AAAAAAAAAAAAuuo8KVQguhvqZbqtNpq2Dfp+O9DFhTkAAIA/AACAP2bXsjz2JC26+p1LPOcYJbb8x2Q7Lj4ZtQAAgD8AAIA/TSJ/PoWL17tiXg67TT1mODPJKr3f4Cc6AACAPwAAgD8zvYc8XAMYumHrmTtyJCg3rbA7OLCKFjYAAIA/AACAP2YygL0pQD261ilYOpDqqbQndaw76ifcswAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.04857599999999995,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVdBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIPu3w1+RoYUCUhpRSlIwBbJRN6AOMAXSUR0CC6XF1B+nZdX2UKGgGaAloD0MI0VynkZZ9XECUhpRSlGgVTegDaBZHQILq4vWYnfF1fZQoaAZoCWgPQwiI1R9hGGliQJSGlFKUaBVN6ANoFkdAguyXDm8ujHV9lChoBmgJaA9DCCkmb4CZRUhAlIaUUpRoFUusaBZHQILt7Jr+Hah1fZQoaAZoCWgPQwi0kIDRZfVjQJSGlFKUaBVN6ANoFkdAgu8LcCYCyXV9lChoBmgJaA9DCD7shQK2N1xAlIaUUpRoFU3oA2gWR0CC79VGTcIrdX2UKGgGaAloD0MISl0yjpFMGUCUhpRSlGgVS7hoFkdAgvWccENe+nV9lChoBmgJaA9DCHtrYKsEFUJAlIaUUpRoFUvAaBZHQIL4UXm/3391fZQoaAZoCWgPQwgDJJpAkR1hQJSGlFKUaBVN6ANoFkdAgvlqYRdyDXV9lChoBmgJaA9DCHfYRGYu+ltAlIaUUpRoFU3oA2gWR0CDTlrt3OfNdX2UKGgGaAloD0MICfoLPWL4akCUhpRSlGgVTeICaBZHQINSCLMs6JZ1fZQoaAZoCWgPQwg75Ga4AYBaQJSGlFKUaBVN6ANoFkdAg1YwyRB/qnV9lChoBmgJaA9DCFmkiXeAEFtAlIaUUpRoFU3oA2gWR0CDXQ5MlC1JdX2UKGgGaAloD0MIXU90XfiMYkCUhpRSlGgVTegDaBZHQINfbqfOD8N1fZQoaAZoCWgPQwj8xAH0e25hQJSGlFKUaBVN6ANoFkdAg2arxqfvnnV9lChoBmgJaA9DCDj4wmSqe2JAlIaUUpRoFU0nA2gWR0CDb2YAsCkodX2UKGgGaAloD0MIrMjogKRRZECUhpRSlGgVTegDaBZHQIN1O8f3evZ1fZQoaAZoCWgPQwhs6dFUTxpdQJSGlFKUaBVN6ANoFkdAg3qbblA/s3V9lChoBmgJaA9DCIEHBhC+o2BAlIaUUpRoFU3oA2gWR0CDe8/yoXKsdX2UKGgGaAloD0MI29styQGbY0CUhpRSlGgVTegDaBZHQIN/S5Xlr/N1fZQoaAZoCWgPQwhy3CkdrP1AQJSGlFKUaBVLuGgWR0CDgBvhIe5ndX2UKGgGaAloD0MIQl4PJkV+YECUhpRSlGgVTegDaBZHQIOCFxCIDYB1fZQoaAZoCWgPQwjJrrSM1NhcQJSGlFKUaBVN6ANoFkdAg4L5CfHxSnV9lChoBmgJaA9DCJIiMqziGThAlIaUUpRoFUvXaBZHQIOHgKhL5AR1fZQoaAZoCWgPQwh1IVZ/hINeQJSGlFKUaBVN6ANoFkdAg4mRwqAjIXV9lChoBmgJaA9DCM9Lxca8F2NAlIaUUpRoFU3oA2gWR0CDjGZCv5gxdX2UKGgGaAloD0MIueLiqFylYUCUhpRSlGgVTegDaBZHQIONhbGFSKp1fZQoaAZoCWgPQwhzucFQh0BcQJSGlFKUaBVN6ANoFkdAg+KhpQDV6XV9lChoBmgJaA9DCGxCWmPQlV5AlIaUUpRoFU3oA2gWR0CD5ibb1yvLdX2UKGgGaAloD0MIX1yq0pbeY0CUhpRSlGgVTegDaBZHQIPqV6ol2Nh1fZQoaAZoCWgPQwgAcOzZc51jQJSGlFKUaBVN6ANoFkdAg/Cdpyp71XV9lChoBmgJaA9DCCDSb18H3l5AlIaUUpRoFU3oA2gWR0CD8rwCKaXsdX2UKGgGaAloD0MIXpz4akdjZECUhpRSlGgVTegDaBZHQIP53llsguB1fZQoaAZoCWgPQwhpGan3VIJGQJSGlFKUaBVLv2gWR0CD+88kD6nBdX2UKGgGaAloD0MIxJRIohfnYkCUhpRSlGgVTegDaBZHQIQNzSgGr0d1fZQoaAZoCWgPQwhRoE/kyYxhQJSGlFKUaBVN6ANoFkdAhA9Al4TsY3V9lChoBmgJaA9DCOY9zjRhCxZAlIaUUpRoFUvZaBZHQIQQquEEkjZ1fZQoaAZoCWgPQwh6OIHptB9iQJSGlFKUaBVN6ANoFkdAhBM/5+H8CXV9lChoBmgJaA9DCIUJo1nZ5j5AlIaUUpRoFU3oA2gWR0CEFDbWVeKLdX2UKGgGaAloD0MIhnZOs0AFR0CUhpRSlGgVTegDaBZHQIQWpRTCLuR1fZQoaAZoCWgPQwh/T6xTZYxgQJSGlFKUaBVN6ANoFkdAhBe59mYjS3V9lChoBmgJaA9DCAdF8wAWmWJAlIaUUpRoFU3oA2gWR0CEHL/WDpTudX2UKGgGaAloD0MI5e5zfLTcQUCUhpRSlGgVS49oFkdAhB3kjX4CZHV9lChoBmgJaA9DCDv7yoN08GFAlIaUUpRoFU3oA2gWR0CEHx62v0ROdX2UKGgGaAloD0MIfJkoQurJWECUhpRSlGgVTegDaBZHQIQikhkiD/V1fZQoaAZoCWgPQwiiXYWUnwZYQJSGlFKUaBVN6ANoFkdAhCPeDWbw0HV9lChoBmgJaA9DCGFwzR19eGdAlIaUUpRoFU3mAmgWR0CENhJ9RaX8dX2UKGgGaAloD0MIixagbbWSYECUhpRSlGgVTegDaBZHQIR7XxWkrPN1fZQoaAZoCWgPQwiLTwEwHsJlQJSGlFKUaBVN6ANoFkdAhH8FenhsInV9lChoBmgJaA9DCCHKF7SQQmhAlIaUUpRoFU3aA2gWR0CEij04BFNMdX2UKGgGaAloD0MIMCsU6f6BYECUhpRSlGgVTegDaBZHQISS1NWU8mt1fZQoaAZoCWgPQwjgMNEgBVNbQJSGlFKUaBVN6ANoFkdAhKgznA6+4HV9lChoBmgJaA9DCAn/ImhMHGJAlIaUUpRoFU3oA2gWR0CEqX4YaYNRdX2UKGgGaAloD0MIwHtHjQkJYECUhpRSlGgVTegDaBZHQIStWV1Oj7B1fZQoaAZoCWgPQwhafuAqT5pfQJSGlFKUaBVN6ANoFkdAhK5JAUtZm3V9lChoBmgJaA9DCGlRn+QO0mdAlIaUUpRoFU3oA2gWR0CEsIEeyRjjdX2UKGgGaAloD0MIObcJ98paYkCUhpRSlGgVTegDaBZHQISxam8/Uvx1fZQoaAZoCWgPQwhZwW9DDEtiQJSGlFKUaBVN6ANoFkdAhLal+Vkc0nV9lChoBmgJaA9DCJjg1AcSNWBAlIaUUpRoFU3oA2gWR0CEt9mjj7yhdX2UKGgGaAloD0MIrK3YX3b5SkCUhpRSlGgVS59oFkdAhLfyfcvdunV9lChoBmgJaA9DCMN+T6zTW2FAlIaUUpRoFU3oA2gWR0CEuNkBCD28dX2UKGgGaAloD0MIXwmkxK4tYkCUhpRSlGgVTegDaBZHQIS7cl5WzWx1fZQoaAZoCWgPQwj+DG/W4IVlQJSGlFKUaBVN6ANoFkdAhLxv69CeE3V9lChoBmgJaA9DCDXuzW+YiEFAlIaUUpRoFUuqaBZHQIS9yBf8dgh1fZQoaAZoCWgPQwjct1onrpJmQJSGlFKUaBVN6ANoFkdAhMvCVSn+AHV9lChoBmgJaA9DCE62gTtQhy9AlIaUUpRoFUu0aBZHQITMopKBd2R1fZQoaAZoCWgPQwhhM8AF2cJlQJSGlFKUaBVN6ANoFkdAhQ4F/x2B8XV9lChoBmgJaA9DCC8Zx0h2KWJAlIaUUpRoFU3oA2gWR0CFER9aUzKtdX2UKGgGaAloD0MIqI3qdKCrZUCUhpRSlGgVTegDaBZHQIUbHUlRgqp1fZQoaAZoCWgPQwgllSnmIAQxQJSGlFKUaBVLyGgWR0CFIj8MNMGpdX2UKGgGaAloD0MIF0omp3bBYUCUhpRSlGgVTegDaBZHQIUjRHTZxrB1fZQoaAZoCWgPQwhMxjGSPZFlQJSGlFKUaBVN6ANoFkdAhTg2/i5uqHV9lChoBmgJaA9DCN6Th4VaYmBAlIaUUpRoFU3oA2gWR0CFPbI8QqZudX2UKGgGaAloD0MIM4rlllbhX0CUhpRSlGgVTegDaBZHQIU+xy4nWrh1fZQoaAZoCWgPQwh2+daHdfZhQJSGlFKUaBVN6ANoFkdAhUI8c2itaXV9lChoBmgJaA9DCC3RWWaRhWBAlIaUUpRoFU3oA2gWR0CFR9DziCJ5dX2UKGgGaAloD0MIFsH/VjIIYkCUhpRSlGgVTegDaBZHQIVI9cQiA2B1fZQoaAZoCWgPQwjEBaBRupxnQJSGlFKUaBVN6ANoFkdAhUkVeSjgynV9lChoBmgJaA9DCEz6eyk8zWJAlIaUUpRoFU3oA2gWR0CFShMWXTmXdX2UKGgGaAloD0MInMQgsPLXZ0CUhpRSlGgVTegDaBZHQIVM0+X7cfx1fZQoaAZoCWgPQwgEATJ07KlfQJSGlFKUaBVN6ANoFkdAhU4F0YCQtHV9lChoBmgJaA9DCGhCk8SSsvi/lIaUUpRoFUvFaBZHQIVO5QvYe1d1fZQoaAZoCWgPQwiGrdnKS/pfQJSGlFKUaBVN6ANoFkdAhV0gwGnn+3V9lChoBmgJaA9DCLggW5avCGJAlIaUUpRoFU3oA2gWR0CFXjlHz6JqdX2UKGgGaAloD0MIPq4NFeMrYECUhpRSlGgVTegDaBZHQIWi3dsSCe51fZQoaAZoCWgPQwjQuHAgJBhiQJSGlFKUaBVN6ANoFkdAhbGMQEpy63V9lChoBmgJaA9DCGgFhqxuLVxAlIaUUpRoFU3oA2gWR0CFuJsJIDoydX2UKGgGaAloD0MI24e85epDYECUhpRSlGgVTegDaBZHQIW5jm4iHIp1fZQoaAZoCWgPQwhGJXUCGuJjQJSGlFKUaBVN6ANoFkdAhczmJWNm2HV9lChoBmgJaA9DCNO/JJWpSWRAlIaUUpRoFU3oA2gWR0CF0utaIN3GdX2UKGgGaAloD0MI5PVgUnxSWkCUhpRSlGgVTegDaBZHQIXWeEIw/Ph1fZQoaAZoCWgPQwhE/MOWHuNeQJSGlFKUaBVN6ANoFkdAhdvMz/IbO3V9lChoBmgJaA9DCAiPNo5YeVpAlIaUUpRoFU3oA2gWR0CF3OcrAgxKdX2UKGgGaAloD0MI4Xt/g/boYECUhpRSlGgVTegDaBZHQIXdAwPAfuF1fZQoaAZoCWgPQwgH0VrR5tFhQJSGlFKUaBVN6ANoFkdAhd4F23azvHV9lChoBmgJaA9DCBx5ILLIt2NAlIaUUpRoFU3oA2gWR0CF4QEvCdjHdX2UKGgGaAloD0MIey5Tk2BFYUCUhpRSlGgVTegDaBZHQIXiNAHE/B51fZQoaAZoCWgPQwhKYHMOHglkQJSGlFKUaBVN6ANoFkdAheNRoZhrnHV9lChoBmgJaA9DCN1bkZggIGdAlIaUUpRoFU3oA2gWR0CF8Vjd56dEdX2UKGgGaAloD0MIylTBqKQdX0CUhpRSlGgVTegDaBZHQIXyXegte2N1ZS4="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 160,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.998,
|
82 |
+
"gae_lambda": 0.99,
|
83 |
+
"ent_coef": 0.005,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 5,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eb07b6cbe2254704b378e2ceec87d1c4b6bf5a8980ce33deb218e490d9e91131
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3525f19fbc8f2c83242d9d2b91edf44f3e33b8366e6fca46250abb56b4a7aa9d
|
3 |
+
size 43393
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.79.1-microsoft-standard-WSL2-x86_64-with-glibc2.29 # 1 SMP Wed Nov 23 01:01:46 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.9.1+cu111
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (235 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 246.18017214131405, "std_reward": 24.245721541837344, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-15T17:50:59.204214"}
|