asadnaqvi commited on
Commit
27bb22b
·
verified ·
1 Parent(s): 7b198a1

Add SetFit ABSA model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,229 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - absa
6
+ - sentence-transformers
7
+ - text-classification
8
+ - generated_from_setfit_trainer
9
+ base_model: BAAI/bge-small-en-v1.5
10
+ metrics:
11
+ - accuracy
12
+ widget:
13
+ - text: People:Based partly on Chinese military journals, internal speeches by senior
14
+ People's Liberation Army (PLA) officers, and patent data, the paper charts more
15
+ than 50 years of the PLA navy's often-glacial nuclear submarine development.
16
+ - text: Qingdao:Chinese Navy's nuclear-powered submarine Long March 11 takes part
17
+ in a naval parade off the eastern port city of Qingdao to mark the 70th anniversary
18
+ of the founding of the Chinese People's Liberation Army Navy.
19
+ - text: warfare drills:Anti-submarine warfare drills are increasing, as are deployments
20
+ of sub-hunting P-8 Poseidon aircraft around Southeast Asia and the Indian Ocean.
21
+ - text: devices:The research also details potential breakthroughs in specific areas,
22
+ including pump-jet propulsion and internal quieting devices, based on 'imitative
23
+ innovation' of Russian technology.
24
+ - text: axe 73,800 jobs:State-run miner Coal India Limited (CIL), which has the biggest
25
+ workforce among listed government undertakings, is likely to axe 73,800 jobs by
26
+ 2050 as India pledges to move from fossil fuels to green power, according to a
27
+ research report released by the US-based think tank Global Energy Monitor (GEM)
28
+ on October 10.
29
+ pipeline_tag: text-classification
30
+ inference: false
31
+ model-index:
32
+ - name: SetFit Aspect Model with BAAI/bge-small-en-v1.5
33
+ results:
34
+ - task:
35
+ type: text-classification
36
+ name: Text Classification
37
+ dataset:
38
+ name: Unknown
39
+ type: unknown
40
+ split: test
41
+ metrics:
42
+ - type: accuracy
43
+ value: 0.7874720357941835
44
+ name: Accuracy
45
+ ---
46
+
47
+ # SetFit Aspect Model with BAAI/bge-small-en-v1.5
48
+
49
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of filtering aspect span candidates.
50
+
51
+ The model has been trained using an efficient few-shot learning technique that involves:
52
+
53
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
54
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
55
+
56
+ This model was trained within the context of a larger system for ABSA, which looks like so:
57
+
58
+ 1. Use a spaCy model to select possible aspect span candidates.
59
+ 2. **Use this SetFit model to filter these possible aspect span candidates.**
60
+ 3. Use a SetFit model to classify the filtered aspect span candidates.
61
+
62
+ ## Model Details
63
+
64
+ ### Model Description
65
+ - **Model Type:** SetFit
66
+ - **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5)
67
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
68
+ - **spaCy Model:** en_core_web_lg
69
+ - **SetFitABSA Aspect Model:** [asadnaqvi/setfitabsa-aspect](https://huggingface.co/asadnaqvi/setfitabsa-aspect)
70
+ - **SetFitABSA Polarity Model:** [asadnaqvi/setfitabsa-polarity](https://huggingface.co/asadnaqvi/setfitabsa-polarity)
71
+ - **Maximum Sequence Length:** 512 tokens
72
+ - **Number of Classes:** 2 classes
73
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
74
+ <!-- - **Language:** Unknown -->
75
+ <!-- - **License:** Unknown -->
76
+
77
+ ### Model Sources
78
+
79
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
80
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
81
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
82
+
83
+ ### Model Labels
84
+ | Label | Examples |
85
+ |:----------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
86
+ | aspect | <ul><li>"visit:The upcoming visit of Saudi Arabia's crown prince Mohammed bin Salman (MBS) to India is not a routine affair."</li><li>"Mohammed bin Salman:The upcoming visit of Saudi Arabia's crown prince Mohammed bin Salman (MBS) to India is not a routine affair."</li><li>'legitimacy:The trip to India is evidently timed to burnish his legitimacy after the international opprobrium that followed the murder of The Washington Post journalist Jamal Khashoggi.'</li></ul> |
87
+ | no aspect | <ul><li>"Saudi Arabia:The upcoming visit of Saudi Arabia's crown prince Mohammed bin Salman (MBS) to India is not a routine affair."</li><li>"MBS:The upcoming visit of Saudi Arabia's crown prince Mohammed bin Salman (MBS) to India is not a routine affair."</li><li>"India:The upcoming visit of Saudi Arabia's crown prince Mohammed bin Salman (MBS) to India is not a routine affair."</li></ul> |
88
+
89
+ ## Evaluation
90
+
91
+ ### Metrics
92
+ | Label | Accuracy |
93
+ |:--------|:---------|
94
+ | **all** | 0.7875 |
95
+
96
+ ## Uses
97
+
98
+ ### Direct Use for Inference
99
+
100
+ First install the SetFit library:
101
+
102
+ ```bash
103
+ pip install setfit
104
+ ```
105
+
106
+ Then you can load this model and run inference.
107
+
108
+ ```python
109
+ from setfit import AbsaModel
110
+
111
+ # Download from the 🤗 Hub
112
+ model = AbsaModel.from_pretrained(
113
+ "asadnaqvi/setfitabsa-aspect",
114
+ "asadnaqvi/setfitabsa-polarity",
115
+ )
116
+ # Run inference
117
+ preds = model("The food was great, but the venue is just way too busy.")
118
+ ```
119
+
120
+ <!--
121
+ ### Downstream Use
122
+
123
+ *List how someone could finetune this model on their own dataset.*
124
+ -->
125
+
126
+ <!--
127
+ ### Out-of-Scope Use
128
+
129
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
130
+ -->
131
+
132
+ <!--
133
+ ## Bias, Risks and Limitations
134
+
135
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
136
+ -->
137
+
138
+ <!--
139
+ ### Recommendations
140
+
141
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
142
+ -->
143
+
144
+ ## Training Details
145
+
146
+ ### Training Set Metrics
147
+ | Training set | Min | Median | Max |
148
+ |:-------------|:----|:--------|:----|
149
+ | Word count | 8 | 25.2939 | 40 |
150
+
151
+ | Label | Training Sample Count |
152
+ |:----------|:----------------------|
153
+ | no aspect | 248 |
154
+ | aspect | 99 |
155
+
156
+ ### Training Hyperparameters
157
+ - batch_size: (128, 128)
158
+ - num_epochs: (5, 5)
159
+ - max_steps: -1
160
+ - sampling_strategy: oversampling
161
+ - body_learning_rate: (2e-05, 1e-05)
162
+ - head_learning_rate: 0.01
163
+ - loss: CosineSimilarityLoss
164
+ - distance_metric: cosine_distance
165
+ - margin: 0.25
166
+ - end_to_end: False
167
+ - use_amp: True
168
+ - warmup_proportion: 0.1
169
+ - seed: 42
170
+ - eval_max_steps: -1
171
+ - load_best_model_at_end: True
172
+
173
+ ### Training Results
174
+ | Epoch | Step | Training Loss | Validation Loss |
175
+ |:----------:|:-------:|:-------------:|:---------------:|
176
+ | 0.0018 | 1 | 0.2598 | - |
177
+ | 0.0893 | 50 | 0.2458 | 0.2552 |
178
+ | 0.1786 | 100 | 0.2418 | 0.2527 |
179
+ | **0.2679** | **150** | **0.2427** | **0.2459** |
180
+ | 0.3571 | 200 | 0.1272 | 0.2566 |
181
+ | 0.4464 | 250 | 0.0075 | 0.3028 |
182
+ | 0.5357 | 300 | 0.0023 | 0.3251 |
183
+ | 0.625 | 350 | 0.0021 | 0.328 |
184
+ | 0.7143 | 400 | 0.0037 | 0.355 |
185
+
186
+ * The bold row denotes the saved checkpoint.
187
+ ### Framework Versions
188
+ - Python: 3.10.12
189
+ - SetFit: 1.0.3
190
+ - Sentence Transformers: 2.7.0
191
+ - spaCy: 3.7.4
192
+ - Transformers: 4.40.1
193
+ - PyTorch: 2.2.1+cu121
194
+ - Datasets: 2.19.0
195
+ - Tokenizers: 0.19.1
196
+
197
+ ## Citation
198
+
199
+ ### BibTeX
200
+ ```bibtex
201
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
202
+ doi = {10.48550/ARXIV.2209.11055},
203
+ url = {https://arxiv.org/abs/2209.11055},
204
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
205
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
206
+ title = {Efficient Few-Shot Learning Without Prompts},
207
+ publisher = {arXiv},
208
+ year = {2022},
209
+ copyright = {Creative Commons Attribution 4.0 International}
210
+ }
211
+ ```
212
+
213
+ <!--
214
+ ## Glossary
215
+
216
+ *Clearly define terms in order to be accessible across audiences.*
217
+ -->
218
+
219
+ <!--
220
+ ## Model Card Authors
221
+
222
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
223
+ -->
224
+
225
+ <!--
226
+ ## Model Card Contact
227
+
228
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
229
+ -->
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "models/step_150",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 1536,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.40.1",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 30522
31
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.28.1",
5
+ "pytorch": "1.13.0+cu117"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null
9
+ }
config_setfit.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "labels": [
3
+ "no aspect",
4
+ "aspect"
5
+ ],
6
+ "spacy_model": "en_core_web_lg",
7
+ "normalize_embeddings": false,
8
+ "span_context": 0
9
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:632ad8463ed94b5d6918d13be6dc388d1cfe583a2fe3d469f84c6312a9855aca
3
+ size 133462128
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:376562608e572c6d4e3f76ac297b53f1c85ce31b41fc9e965a607eb8394dfb3d
3
+ size 3919
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 512,
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff