File size: 3,901 Bytes
887f68e
 
2aefc14
 
 
 
 
 
 
 
887f68e
 
 
 
2aefc14
 
887f68e
 
 
 
 
2aefc14
 
 
 
 
3a8e336
 
2aefc14
 
 
 
3a8e336
 
2aefc14
 
887f68e
 
 
2aefc14
 
 
 
887f68e
 
 
 
 
2aefc14
 
887f68e
 
 
2aefc14
887f68e
 
 
2aefc14
887f68e
 
 
 
 
2aefc14
887f68e
 
 
 
 
 
 
 
 
2aefc14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
887f68e
 
 
 
2aefc14
 
887f68e
2aefc14
887f68e
2aefc14
887f68e
 
 
2aefc14
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
---
library_name: transformers
tags:
- art
datasets:
- ColumbiaNLP/V-FLUTE
language:
- en
metrics:
- f1
---

# Model Card for Model ID

This is the checkpoint for the model from the paper [V-FLUTE: Visual Figurative Language Understanding with Textual Explanations](https://arxiv.org/abs/2405.01474).
Specifically, it is the best performing fine-tuned model on a combination of V-FLUTE and e-ViL (e-SNLI-VE) datasets with early stopping based on the V-FLUTE validation set.

## Model Details

### Model Description

See more on LLaVA 1.5 here: https://github.com/haotian-liu/LLaVA
V-FLUTE dataset: https://huggingface.co/datasets/ColumbiaNLP/V-FLUTE
V-FLUTE paper: https://arxiv.org/abs/2405.01474
Citation:
```
@misc{saakyan2024understandingfigurativemeaningexplainable,
      title={Understanding Figurative Meaning through Explainable Visual Entailment}, 
      author={Arkadiy Saakyan and Shreyas Kulkarni and Tuhin Chakrabarty and Smaranda Muresan},
      year={2024},
      eprint={2405.01474},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2405.01474}, 
}
```

This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.

- **Developed by:** Arkadiy Saakyan (ColumbiaNLP)
- **Model type:** Vision-Language Model
- **Language(s) (NLP):** English
- **Finetuned from model [optional]:** LLaVA-v1.5

### Model Sources [optional]

<!-- Provide the basic links for the model. -->

- **Repository:** https://github.com/asaakyan/V-FLUTE
- **Paper [optional]:** https://arxiv.org/abs/2405.01474

## Uses

The model's intended use is limited to interpreting multimodal figurative inputs such as metaphors, similes, idioms, sarcasm, and humor.

### Out-of-Scope Use

The model may not work well for other general instruction-following usecases.

[More Information Needed]

## Bias, Risks, and Limitations

The V-FLUTE dataset or its source datasets may contain bias, especially in datasets reflecting user-generated distributions (memecap and muse).

### Recommendations

<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

## How to Get Started with the Model

Install LLaVA as described here: https://github.com/asaakyan/LLaVA/tree/6f595efcf2699884f18957ee603986cebfaa9df7

```
from llava.model.builder import load_pretrained_model
from llava.mm_utils import get_model_name_from_path
from llava.eval.run_llava_mod import eval_model

model_base =  "llava-v1.5-7b"
model_dir = "llava-v1.5-7b-evil-vflue-v2-lora"
model_name = get_model_name_from_path(model_path)
tokenizer, model, image_processor, context_len = load_pretrained_model(
    model_path=model_path,
    model_base=model_base,
    model_name=model_name,
    load_4bit=False
)

prompt = """Does the illustration affirm or contest the claim "Feeling motivated and energetic after only cleaning a room minimally."? Provide your argument and choose a label: entailment or contradiction."""
image_file = f"{image_path}/27.png"

infer_args = type('Args', (), {
"model_name": model_name,
    "model": model,
    "tokenizer": tokenizer,
    "image_processor": image_processor,
    "query": prompt,
    "conv_mode": None,
    "image_file": image_file,
    "sep": ",",
    "temperature": 0,
    "top_p": None,
    "num_beams": 3,
    "max_new_tokens": 512
})()
output = eval_model(infer_args)
print(output)
```


## Training Details

See [here](https://github.com/asaakyan/LLaVA/tree/6f595efcf2699884f18957ee603986cebfaa9df7/scripts/vflute)
or [here](https://github.com/asaakyan/V-FLUTE)

### Training Data

https://huggingface.co/datasets/ColumbiaNLP/V-FLUTE

## Model Card Contact

[email protected]