arunb74 commited on
Commit
dd47d85
1 Parent(s): 2912fe5

# Model Card for Model ID

# Model Name
Luxeai-anu-1-bit-70M

## Model Description
The Luxeai-anu-1-bit-70M Large Language Model (LLM) is my first trial to implement one-bit LLM based on the original paper - "The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits". I have taken the pre-trained Mistral-7B-v0.3 and abideen/Cosmopedia-100k-pretrain dataset.

## Intended Use
- **Task**: Describe the specific tasks (e.g., sentiment analysis, text generation) the model is designed for.
- **Industries**: Mention any particular industries or applications where the model could be applied.
- **Users**: Identify the intended users (e.g., researchers, developers).

## How to Use
Provide code examples for loading and using the model:

```python
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("username/model_name")
model = AutoModel.from_pretrained("username/model_name")

# Example usage
inputs = tokenizer("Hello, world!", return_tensors="pt")
outputs = model(**inputs)

Files changed (1) hide show
  1. README.md +26 -1
README.md CHANGED
@@ -7,4 +7,29 @@ datasets:
7
  metrics:
8
  - accuracy
9
  library_name: transformers
10
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  metrics:
8
  - accuracy
9
  library_name: transformers
10
+ ---
11
+ # Model Card for Model ID
12
+
13
+ # Model Name
14
+ Luxeai-anu-1-bit-70M
15
+
16
+ ## Model Description
17
+ The Luxeai-anu-1-bit-70M Large Language Model (LLM) is my first trial to implement one-bit LLM based on the original paper - "The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits". I have taken the pre-trained Mistral-7B-v0.3 and abideen/Cosmopedia-100k-pretrain dataset.
18
+
19
+ ## Intended Use
20
+ - **Task**: Describe the specific tasks (e.g., sentiment analysis, text generation) the model is designed for.
21
+ - **Industries**: Mention any particular industries or applications where the model could be applied.
22
+ - **Users**: Identify the intended users (e.g., researchers, developers).
23
+
24
+ ## How to Use
25
+ Provide code examples for loading and using the model:
26
+
27
+ ```python
28
+ from transformers import AutoModel, AutoTokenizer
29
+
30
+ tokenizer = AutoTokenizer.from_pretrained("username/model_name")
31
+ model = AutoModel.from_pretrained("username/model_name")
32
+
33
+ # Example usage
34
+ inputs = tokenizer("Hello, world!", return_tensors="pt")
35
+ outputs = model(**inputs)