File size: 3,913 Bytes
bd826a2 9914a5d bd826a2 00359d2 bd826a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
---
license: other
license_name: bespoke-lora-trained-license
license_link: https://multimodal.art/civitai-licenses?allowNoCredit=True&allowCommercialUse=Image&allowDerivatives=False&allowDifferentLicense=False
tags:
- text-to-image
- stable-diffusion
- lora
- diffusers
- template:sd-lora
- style
- film grain
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: Film Grain
widget:
- text: 'A beautiful blonde girl, close-up, portrait
,Film Grain, FilmGrainAF,'
output:
url: >-
4596085.jpeg
- text: 'A beautiful blonde girl, close-up, portrait
,Film Grain, FilmGrainAF,'
output:
url: >-
4596086.jpeg
- text: 'A beautiful blonde girl, close-up, portrait
,Film Grain, FilmGrainAF,'
output:
url: >-
4596087.jpeg
- text: 'A bodybuilder old man, close-up, portrait
,Film Grain, FilmGrainAF,'
output:
url: >-
4596088.jpeg
- text: 'A young king, close-up, portrait
,Film Grain, FilmGrainAF,'
output:
url: >-
4596090.jpeg
- text: 'A young king, close-up, portrait
,Film Grain, FilmGrainAF,'
output:
url: >-
4596091.jpeg
- text: 'A cat wearing christmas hat,
,Film Grain, FilmGrainAF,'
output:
url: >-
4596092.jpeg
- text: 'A cat wearing christmas hat,
,Film Grain, FilmGrainAF,'
output:
url: >-
4596094.jpeg
inference:
parameters:
num_inference_steps: 30
scheduler: 'DPMSolverMultistepScheduler'
---
# FilmGrain.Redmond - FilmGrain Lora For SDXL
<Gallery />
## Model description
<h1 id="heading-28">FilmGrain.Redmond is here!</h1><p>I'm grateful for the GPU time from <strong>Redmond.AI</strong> that allowed me to finish this LORA!</p><p>This is a <strong>Film Grain </strong>LORA fine-tuned on <strong>SD XL 1.0.</strong></p><p>Test all my Loras <a target="_blank" rel="ugc" href="https://huggingface.co/spaces/artificialguybr/artificialguybr-demo-lora">here</a> for free and unlimited. Thanks, HF, for Inference API!</p><p>The LORA has a high capacity to generate Film Grain in a wide variety of themes.<strong> It's a versatile LORA.</strong></p><p>I recommend gen in 1024x1024.</p><p>You can use detailed, minimalist, colorful, black and white as tag to control the results.</p><p><strong><u>The tag for the model:Film Grain, FilmGrainAF</u></strong></p><p>LORA is not perfect and sometimes needs more than one gen to create good images. I recommend simple prompts.</p><p>I really hope you like the LORA and use it.</p><p>If you like the model and think it's worth it, you can make a donation to my <a target="_blank" rel="ugc" href="https://www.patreon.com/user?u=81570187">Patreon</a> or <a target="_blank" rel="ugc" href="https://ko-fi.com/jvkape">Ko-fi</a>.</p><p>Follow me in my twitter to know before all about new models:</p><p><a target="_blank" rel="ugc" href="https://twitter.com/artificialguybr/"><u>https://twitter.com/artificialguybr/</u></a></p>
## Trigger words
You should use `Film Grain`, `FilmGrainAF` to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](/artificialguybr/filmgrain-redmond-filmgrain-lora-for-sdxl/tree/main) them in the Files & versions tab.
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('runwayml/stable-diffusion-v1-5', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('artificialguybr/filmgrain-redmond-filmgrain-lora-for-sdxl', weight_name='FilmGrainRedmond-FilmGrain-FilmGrainAF.safetensors')
image = pipeline('A cat wearing christmas hat,
,Film Grain, FilmGrainAF,').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
|