arsath-sm commited on
Commit
47db58a
Β·
verified Β·
1 Parent(s): 3411c7e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +148 -3
README.md CHANGED
@@ -1,3 +1,148 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ ---
4
+ ---
5
+ language: en
6
+ tags:
7
+ - image-classification
8
+ - computer-vision
9
+ - deep-learning
10
+ - face-detection
11
+ - resnet
12
+ datasets:
13
+ - custom
14
+ license: mit
15
+ ---
16
+
17
+ # ResNet-based Face Classification Model 🎭
18
+
19
+ This model is trained to distinguish between real human faces and AI-generated faces using a ResNet-based architecture.
20
+
21
+ ## Model Description πŸ“
22
+
23
+ ### Model Architecture
24
+ - Deep CNN with residual connections based on ResNet architecture
25
+ - Input shape: (224, 224, 3)
26
+ - Multiple residual blocks with increasing filter sizes [64, 128, 256, 512]
27
+ - Global average pooling
28
+ - Dense layers with dropout for classification
29
+ - Binary output with sigmoid activation
30
+
31
+ ### Task
32
+ Binary classification to determine if a face image is real (human) or AI-generated.
33
+
34
+ ### Framework and Training
35
+ - Framework: TensorFlow
36
+ - Training Device: GPU
37
+ - Training Dataset: Custom dataset of real and AI-generated faces
38
+ - Validation Metrics:
39
+ - Accuracy: 52.45%
40
+ - Loss: 0.7246
41
+
42
+ ## Intended Use 🎯
43
+
44
+ ### Primary Intended Uses
45
+ - Research in deepfake detection
46
+ - Educational purposes in deep learning
47
+ - Face authentication systems
48
+
49
+ ### Out-of-Scope Uses
50
+ - Production-level face verification
51
+ - Legal or forensic applications
52
+ - Stand-alone security systems
53
+
54
+ ## Training Procedure πŸ”„
55
+
56
+ ### Training Details
57
+ ```python
58
+ optimizer = Adam(learning_rate=0.0001)
59
+ loss = 'binary_crossentropy'
60
+ metrics = ['accuracy']
61
+ ```
62
+
63
+ ### Training Hyperparameters
64
+ - Learning rate: 0.0001
65
+ - Batch size: 32
66
+ - Dropout rate: 0.5
67
+ - Architecture:
68
+ - Initial conv: 64 filters, 7x7
69
+ - Residual blocks: [64, 128, 256, 512] filters
70
+ - Dense layer: 256 units
71
+
72
+ ## Evaluation Results πŸ“Š
73
+
74
+ ### Performance Metrics
75
+ - Validation Accuracy: 52.45%
76
+ - Validation Loss: 0.7246
77
+
78
+ ### Limitations
79
+ - Performance is only slightly better than random chance
80
+ - May struggle with high-quality AI-generated images
81
+ - Limited testing on diverse face datasets
82
+
83
+ ## Usage πŸ’»
84
+
85
+ ```python
86
+ from tensorflow.keras.models import load_model
87
+ import cv2
88
+ import numpy as np
89
+
90
+ # Load the model
91
+ model = load_model('face_classification_model1')
92
+
93
+ # Preprocess image
94
+ def preprocess_image(image_path):
95
+ img = cv2.imread(image_path)
96
+ img = cv2.resize(img, (224, 224))
97
+ img = img / 255.0
98
+ return np.expand_dims(img, axis=0)
99
+
100
+ # Make prediction
101
+ image = preprocess_image('face_image.jpg')
102
+ prediction = model.predict(image)
103
+ is_real = prediction[0][0] > 0.5
104
+ ```
105
+
106
+
107
+ ## Ethical Considerations 🀝
108
+
109
+ This model is designed for research and educational purposes only. Users should:
110
+ - Obtain proper consent when processing personal face images
111
+ - Be aware of potential biases in face detection systems
112
+ - Consider privacy implications when using face analysis tools
113
+ - Not use this model for surveillance or harmful applications
114
+
115
+ ## Technical Limitations ⚠️
116
+
117
+ 1. Current performance limitations:
118
+ - Accuracy only slightly above random chance
119
+ - May require ensemble methods for better results
120
+ - Limited testing on diverse datasets
121
+
122
+ 2. Recommended improvements:
123
+ - Extended training with larger datasets
124
+ - Implementation of data augmentation
125
+ - Hyperparameter optimization
126
+ - Transfer learning from pre-trained models
127
+
128
+ ## Citation πŸ“š
129
+
130
+ ```bibtex
131
+ @software{face_classification_model1,
132
+ author = {Your Name},
133
+ title = {Face Classification Model using ResNet Architecture},
134
+ year = {2024},
135
+ publisher = {HuggingFace},
136
+ url = {https://huggingface.co/arsath-sm/face_classification_model1}
137
+ }
138
+ ```
139
+
140
+ ## Contributors πŸ‘₯
141
+ - Arsath S.M
142
+ - Faahith K.R.M
143
+ - Arafath M.S.M
144
+
145
+ University of Jaffna
146
+
147
+ ## License πŸ“„
148
+ This model is licensed under the MIT License.