First pass at uploading trained model to HF
Browse files- README.md +248 -0
- adapter_config.json +25 -0
- adapter_model.safetensors +3 -0
- final_checkpoint/README.md +219 -0
- final_checkpoint/adapter_config.json +25 -0
- final_checkpoint/adapter_model.bin +3 -0
README.md
CHANGED
@@ -1,3 +1,251 @@
|
|
1 |
---
|
|
|
|
|
2 |
license: bigcode-openrail-m
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: bigcode/starcoderbase-3b
|
4 |
license: bigcode-openrail-m
|
5 |
---
|
6 |
+
|
7 |
+
# Model Card for Model ID
|
8 |
+
|
9 |
+
First pass at finetuning `bigcode/starcoderbase-3b` on the Elixir language subset of `bigcode/the-stack-dedup`
|
10 |
+
|
11 |
+
## Model Details
|
12 |
+
|
13 |
+
### Model Description
|
14 |
+
|
15 |
+
- **Developed by:** [More Information Needed]
|
16 |
+
- **Shared by [optional]:** [More Information Needed]
|
17 |
+
- **Model type:** [More Information Needed]
|
18 |
+
- **Language(s) (NLP):** [More Information Needed]
|
19 |
+
- **License:** [More Information Needed]
|
20 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
21 |
+
|
22 |
+
### Model Sources [optional]
|
23 |
+
|
24 |
+
<!-- Provide the basic links for the model. -->
|
25 |
+
|
26 |
+
- **Repository:** [arpieb/peft-lora-starcoderbase-3b-personal-copilot-elixir](https://huggingface.co/arpieb/peft-lora-starcoderbase-3b-personal-copilot-elixir)
|
27 |
+
|
28 |
+
## Uses
|
29 |
+
|
30 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
31 |
+
|
32 |
+
### Direct Use
|
33 |
+
|
34 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
35 |
+
|
36 |
+
[More Information Needed]
|
37 |
+
|
38 |
+
### Downstream Use [optional]
|
39 |
+
|
40 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
41 |
+
|
42 |
+
[More Information Needed]
|
43 |
+
|
44 |
+
### Out-of-Scope Use
|
45 |
+
|
46 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
47 |
+
|
48 |
+
[More Information Needed]
|
49 |
+
|
50 |
+
## Bias, Risks, and Limitations
|
51 |
+
|
52 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
53 |
+
|
54 |
+
[More Information Needed]
|
55 |
+
|
56 |
+
### Recommendations
|
57 |
+
|
58 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
59 |
+
|
60 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
61 |
+
|
62 |
+
## How to Get Started with the Model
|
63 |
+
|
64 |
+
Use the code below to get started with the model.
|
65 |
+
|
66 |
+
[More Information Needed]
|
67 |
+
|
68 |
+
## Training Details
|
69 |
+
|
70 |
+
### Training Data
|
71 |
+
|
72 |
+
[bigcode/the-stack-dedup](https://huggingface.co/datasets/bigcode/the-stack-dedup)
|
73 |
+
|
74 |
+
### Training Procedure
|
75 |
+
|
76 |
+
Based on the finetuning workflow detailed in [Personal Copilot: Train Your Own Coding Assistant](https://huggingface.co/blog/personal-copilot), specifically the training code found under `personal_copilot/training` in the repo [pacman100/DHS-LLM-Workshop](https://github.com/pacman100/DHS-LLM-Workshop).
|
77 |
+
|
78 |
+
Script used to train the model:
|
79 |
+
|
80 |
+
```bash
|
81 |
+
python train.py \
|
82 |
+
--model_path "bigcode/starcoderbase-3b" \
|
83 |
+
--dataset_name "bigcode/the-stack-dedup" \
|
84 |
+
--subset "data/elixir" \
|
85 |
+
--data_column "content" \
|
86 |
+
--split "train" \
|
87 |
+
--seq_length 2048 \
|
88 |
+
--max_steps 2000 \
|
89 |
+
--batch_size 4 \
|
90 |
+
--gradient_accumulation_steps 4 \
|
91 |
+
--learning_rate 5e-4 \
|
92 |
+
--lr_scheduler_type "cosine" \
|
93 |
+
--weight_decay 0.01 \
|
94 |
+
--num_warmup_steps 30 \
|
95 |
+
--eval_freq 100 \
|
96 |
+
--save_freq 100 \
|
97 |
+
--log_freq 25 \
|
98 |
+
--num_workers 4 \
|
99 |
+
--bf16 \
|
100 |
+
--no_fp16 \
|
101 |
+
--output_dir "peft-lora-starcoderbase-3b-personal-copilot-rtx4090-elixir" \
|
102 |
+
--push_to_hub "false" \
|
103 |
+
--fim_rate 0.5 \
|
104 |
+
--fim_spm_rate 0.5 \
|
105 |
+
--use_flash_attn \
|
106 |
+
--use_peft_lora \
|
107 |
+
--lora_r 32 \
|
108 |
+
--lora_alpha 64 \
|
109 |
+
--lora_dropout 0.0 \
|
110 |
+
--lora_target_modules "c_proj,c_attn,q_attn,c_fc,c_proj" \
|
111 |
+
--use_4bit_qunatization \
|
112 |
+
--use_nested_quant \
|
113 |
+
--bnb_4bit_compute_dtype "bfloat16"
|
114 |
+
```
|
115 |
+
|
116 |
+
#### Preprocessing
|
117 |
+
|
118 |
+
N/A
|
119 |
+
|
120 |
+
|
121 |
+
#### Training Hyperparameters
|
122 |
+
|
123 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
124 |
+
|
125 |
+
#### Speeds, Sizes, Times [optional]
|
126 |
+
|
127 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
## Evaluation
|
132 |
+
|
133 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
134 |
+
|
135 |
+
### Testing Data, Factors & Metrics
|
136 |
+
|
137 |
+
#### Testing Data
|
138 |
+
|
139 |
+
<!-- This should link to a Data Card if possible. -->
|
140 |
+
|
141 |
+
[More Information Needed]
|
142 |
+
|
143 |
+
#### Factors
|
144 |
+
|
145 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
146 |
+
|
147 |
+
[More Information Needed]
|
148 |
+
|
149 |
+
#### Metrics
|
150 |
+
|
151 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
152 |
+
|
153 |
+
[More Information Needed]
|
154 |
+
|
155 |
+
### Results
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
#### Summary
|
160 |
+
|
161 |
+
|
162 |
+
|
163 |
+
## Model Examination [optional]
|
164 |
+
|
165 |
+
<!-- Relevant interpretability work for the model goes here -->
|
166 |
+
|
167 |
+
[More Information Needed]
|
168 |
+
|
169 |
+
## Environmental Impact
|
170 |
+
|
171 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
172 |
+
|
173 |
+
NOTE the RTX-4090 is not available in the above estimator; will update once there is data available.
|
174 |
+
|
175 |
+
- **Hardware Type:** NVIDIA GeForce RTX 4090
|
176 |
+
- **Hours used:** 5h 20m 2s
|
177 |
+
- **Cloud Provider:** Local rig
|
178 |
+
- **Compute Region:** N/A
|
179 |
+
- **Carbon Emitted:** N/A
|
180 |
+
|
181 |
+
## Technical Specifications [optional]
|
182 |
+
|
183 |
+
### Model Architecture and Objective
|
184 |
+
|
185 |
+
[More Information Needed]
|
186 |
+
|
187 |
+
### Compute Infrastructure
|
188 |
+
|
189 |
+
#### Hardware
|
190 |
+
|
191 |
+
Local DL rig with the following configuration:
|
192 |
+
|
193 |
+
- NVIDIA GeForce RTX 4090
|
194 |
+
- Intel(R) Core(TM) i7-7800X CPU @ 3.50GHz
|
195 |
+
- 128GB RAM
|
196 |
+
|
197 |
+
|
198 |
+
#### Software
|
199 |
+
|
200 |
+
[More Information Needed]
|
201 |
+
|
202 |
+
## Citation [optional]
|
203 |
+
|
204 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
205 |
+
|
206 |
+
**BibTeX:**
|
207 |
+
|
208 |
+
[More Information Needed]
|
209 |
+
|
210 |
+
**APA:**
|
211 |
+
|
212 |
+
[More Information Needed]
|
213 |
+
|
214 |
+
## Glossary [optional]
|
215 |
+
|
216 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
217 |
+
|
218 |
+
[More Information Needed]
|
219 |
+
|
220 |
+
## More Information [optional]
|
221 |
+
|
222 |
+
[More Information Needed]
|
223 |
+
|
224 |
+
## Model Card Authors [optional]
|
225 |
+
|
226 |
+
[More Information Needed]
|
227 |
+
|
228 |
+
## Model Card Contact
|
229 |
+
|
230 |
+
[More Information Needed]
|
231 |
+
|
232 |
+
|
233 |
+
## Training procedure
|
234 |
+
|
235 |
+
|
236 |
+
The following `bitsandbytes` quantization config was used during training:
|
237 |
+
- quant_method: bitsandbytes
|
238 |
+
- load_in_8bit: False
|
239 |
+
- load_in_4bit: True
|
240 |
+
- llm_int8_threshold: 6.0
|
241 |
+
- llm_int8_skip_modules: None
|
242 |
+
- llm_int8_enable_fp32_cpu_offload: False
|
243 |
+
- llm_int8_has_fp16_weight: False
|
244 |
+
- bnb_4bit_quant_type: nf4
|
245 |
+
- bnb_4bit_use_double_quant: True
|
246 |
+
- bnb_4bit_compute_dtype: bfloat16
|
247 |
+
|
248 |
+
### Framework versions
|
249 |
+
|
250 |
+
|
251 |
+
- PEFT 0.6.2.dev0
|
adapter_config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "bigcode/starcoderbase-3b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layers_pattern": null,
|
10 |
+
"layers_to_transform": null,
|
11 |
+
"lora_alpha": 64,
|
12 |
+
"lora_dropout": 0.0,
|
13 |
+
"modules_to_save": null,
|
14 |
+
"peft_type": "LORA",
|
15 |
+
"r": 32,
|
16 |
+
"rank_pattern": {},
|
17 |
+
"revision": null,
|
18 |
+
"target_modules": [
|
19 |
+
"c_fc",
|
20 |
+
"c_attn",
|
21 |
+
"q_attn",
|
22 |
+
"c_proj"
|
23 |
+
],
|
24 |
+
"task_type": "CAUSAL_LM"
|
25 |
+
}
|
adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7bd241efe9ec35e87cb50340815e1ef471b939730d68c02d8b5fd2989019fb8f
|
3 |
+
size 91460408
|
final_checkpoint/README.md
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: bigcode/starcoderbase-3b
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Shared by [optional]:** [More Information Needed]
|
22 |
+
- **Model type:** [More Information Needed]
|
23 |
+
- **Language(s) (NLP):** [More Information Needed]
|
24 |
+
- **License:** [More Information Needed]
|
25 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
26 |
+
|
27 |
+
### Model Sources [optional]
|
28 |
+
|
29 |
+
<!-- Provide the basic links for the model. -->
|
30 |
+
|
31 |
+
- **Repository:** [More Information Needed]
|
32 |
+
- **Paper [optional]:** [More Information Needed]
|
33 |
+
- **Demo [optional]:** [More Information Needed]
|
34 |
+
|
35 |
+
## Uses
|
36 |
+
|
37 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
38 |
+
|
39 |
+
### Direct Use
|
40 |
+
|
41 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
42 |
+
|
43 |
+
[More Information Needed]
|
44 |
+
|
45 |
+
### Downstream Use [optional]
|
46 |
+
|
47 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
48 |
+
|
49 |
+
[More Information Needed]
|
50 |
+
|
51 |
+
### Out-of-Scope Use
|
52 |
+
|
53 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
54 |
+
|
55 |
+
[More Information Needed]
|
56 |
+
|
57 |
+
## Bias, Risks, and Limitations
|
58 |
+
|
59 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
60 |
+
|
61 |
+
[More Information Needed]
|
62 |
+
|
63 |
+
### Recommendations
|
64 |
+
|
65 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
66 |
+
|
67 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
68 |
+
|
69 |
+
## How to Get Started with the Model
|
70 |
+
|
71 |
+
Use the code below to get started with the model.
|
72 |
+
|
73 |
+
[More Information Needed]
|
74 |
+
|
75 |
+
## Training Details
|
76 |
+
|
77 |
+
### Training Data
|
78 |
+
|
79 |
+
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
80 |
+
|
81 |
+
[More Information Needed]
|
82 |
+
|
83 |
+
### Training Procedure
|
84 |
+
|
85 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
86 |
+
|
87 |
+
#### Preprocessing [optional]
|
88 |
+
|
89 |
+
[More Information Needed]
|
90 |
+
|
91 |
+
|
92 |
+
#### Training Hyperparameters
|
93 |
+
|
94 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
95 |
+
|
96 |
+
#### Speeds, Sizes, Times [optional]
|
97 |
+
|
98 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
99 |
+
|
100 |
+
[More Information Needed]
|
101 |
+
|
102 |
+
## Evaluation
|
103 |
+
|
104 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
105 |
+
|
106 |
+
### Testing Data, Factors & Metrics
|
107 |
+
|
108 |
+
#### Testing Data
|
109 |
+
|
110 |
+
<!-- This should link to a Data Card if possible. -->
|
111 |
+
|
112 |
+
[More Information Needed]
|
113 |
+
|
114 |
+
#### Factors
|
115 |
+
|
116 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
117 |
+
|
118 |
+
[More Information Needed]
|
119 |
+
|
120 |
+
#### Metrics
|
121 |
+
|
122 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
123 |
+
|
124 |
+
[More Information Needed]
|
125 |
+
|
126 |
+
### Results
|
127 |
+
|
128 |
+
[More Information Needed]
|
129 |
+
|
130 |
+
#### Summary
|
131 |
+
|
132 |
+
|
133 |
+
|
134 |
+
## Model Examination [optional]
|
135 |
+
|
136 |
+
<!-- Relevant interpretability work for the model goes here -->
|
137 |
+
|
138 |
+
[More Information Needed]
|
139 |
+
|
140 |
+
## Environmental Impact
|
141 |
+
|
142 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
143 |
+
|
144 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
145 |
+
|
146 |
+
- **Hardware Type:** [More Information Needed]
|
147 |
+
- **Hours used:** [More Information Needed]
|
148 |
+
- **Cloud Provider:** [More Information Needed]
|
149 |
+
- **Compute Region:** [More Information Needed]
|
150 |
+
- **Carbon Emitted:** [More Information Needed]
|
151 |
+
|
152 |
+
## Technical Specifications [optional]
|
153 |
+
|
154 |
+
### Model Architecture and Objective
|
155 |
+
|
156 |
+
[More Information Needed]
|
157 |
+
|
158 |
+
### Compute Infrastructure
|
159 |
+
|
160 |
+
[More Information Needed]
|
161 |
+
|
162 |
+
#### Hardware
|
163 |
+
|
164 |
+
[More Information Needed]
|
165 |
+
|
166 |
+
#### Software
|
167 |
+
|
168 |
+
[More Information Needed]
|
169 |
+
|
170 |
+
## Citation [optional]
|
171 |
+
|
172 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
173 |
+
|
174 |
+
**BibTeX:**
|
175 |
+
|
176 |
+
[More Information Needed]
|
177 |
+
|
178 |
+
**APA:**
|
179 |
+
|
180 |
+
[More Information Needed]
|
181 |
+
|
182 |
+
## Glossary [optional]
|
183 |
+
|
184 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
185 |
+
|
186 |
+
[More Information Needed]
|
187 |
+
|
188 |
+
## More Information [optional]
|
189 |
+
|
190 |
+
[More Information Needed]
|
191 |
+
|
192 |
+
## Model Card Authors [optional]
|
193 |
+
|
194 |
+
[More Information Needed]
|
195 |
+
|
196 |
+
## Model Card Contact
|
197 |
+
|
198 |
+
[More Information Needed]
|
199 |
+
|
200 |
+
|
201 |
+
## Training procedure
|
202 |
+
|
203 |
+
|
204 |
+
The following `bitsandbytes` quantization config was used during training:
|
205 |
+
- quant_method: bitsandbytes
|
206 |
+
- load_in_8bit: False
|
207 |
+
- load_in_4bit: True
|
208 |
+
- llm_int8_threshold: 6.0
|
209 |
+
- llm_int8_skip_modules: None
|
210 |
+
- llm_int8_enable_fp32_cpu_offload: False
|
211 |
+
- llm_int8_has_fp16_weight: False
|
212 |
+
- bnb_4bit_quant_type: nf4
|
213 |
+
- bnb_4bit_use_double_quant: True
|
214 |
+
- bnb_4bit_compute_dtype: bfloat16
|
215 |
+
|
216 |
+
### Framework versions
|
217 |
+
|
218 |
+
|
219 |
+
- PEFT 0.6.2.dev0
|
final_checkpoint/adapter_config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "bigcode/starcoderbase-3b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layers_pattern": null,
|
10 |
+
"layers_to_transform": null,
|
11 |
+
"lora_alpha": 64,
|
12 |
+
"lora_dropout": 0.0,
|
13 |
+
"modules_to_save": null,
|
14 |
+
"peft_type": "LORA",
|
15 |
+
"r": 32,
|
16 |
+
"rank_pattern": {},
|
17 |
+
"revision": null,
|
18 |
+
"target_modules": [
|
19 |
+
"c_fc",
|
20 |
+
"c_attn",
|
21 |
+
"q_attn",
|
22 |
+
"c_proj"
|
23 |
+
],
|
24 |
+
"task_type": "CAUSAL_LM"
|
25 |
+
}
|
final_checkpoint/adapter_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f4e82360cf896135a6a3bcdf57560732cb874d5a61e6fb82487a215f6a313434
|
3 |
+
size 91525898
|