arpieb commited on
Commit
38712c7
·
1 Parent(s): 1a4b9d0

First pass at uploading trained model to HF

Browse files
README.md CHANGED
@@ -1,3 +1,251 @@
1
  ---
 
 
2
  license: bigcode-openrail-m
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ library_name: peft
3
+ base_model: bigcode/starcoderbase-3b
4
  license: bigcode-openrail-m
5
  ---
6
+
7
+ # Model Card for Model ID
8
+
9
+ First pass at finetuning `bigcode/starcoderbase-3b` on the Elixir language subset of `bigcode/the-stack-dedup`
10
+
11
+ ## Model Details
12
+
13
+ ### Model Description
14
+
15
+ - **Developed by:** [More Information Needed]
16
+ - **Shared by [optional]:** [More Information Needed]
17
+ - **Model type:** [More Information Needed]
18
+ - **Language(s) (NLP):** [More Information Needed]
19
+ - **License:** [More Information Needed]
20
+ - **Finetuned from model [optional]:** [More Information Needed]
21
+
22
+ ### Model Sources [optional]
23
+
24
+ <!-- Provide the basic links for the model. -->
25
+
26
+ - **Repository:** [arpieb/peft-lora-starcoderbase-3b-personal-copilot-elixir](https://huggingface.co/arpieb/peft-lora-starcoderbase-3b-personal-copilot-elixir)
27
+
28
+ ## Uses
29
+
30
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
31
+
32
+ ### Direct Use
33
+
34
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
35
+
36
+ [More Information Needed]
37
+
38
+ ### Downstream Use [optional]
39
+
40
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
41
+
42
+ [More Information Needed]
43
+
44
+ ### Out-of-Scope Use
45
+
46
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
47
+
48
+ [More Information Needed]
49
+
50
+ ## Bias, Risks, and Limitations
51
+
52
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
53
+
54
+ [More Information Needed]
55
+
56
+ ### Recommendations
57
+
58
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
59
+
60
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
61
+
62
+ ## How to Get Started with the Model
63
+
64
+ Use the code below to get started with the model.
65
+
66
+ [More Information Needed]
67
+
68
+ ## Training Details
69
+
70
+ ### Training Data
71
+
72
+ [bigcode/the-stack-dedup](https://huggingface.co/datasets/bigcode/the-stack-dedup)
73
+
74
+ ### Training Procedure
75
+
76
+ Based on the finetuning workflow detailed in [Personal Copilot: Train Your Own Coding Assistant](https://huggingface.co/blog/personal-copilot), specifically the training code found under `personal_copilot/training` in the repo [pacman100/DHS-LLM-Workshop](https://github.com/pacman100/DHS-LLM-Workshop).
77
+
78
+ Script used to train the model:
79
+
80
+ ```bash
81
+ python train.py \
82
+ --model_path "bigcode/starcoderbase-3b" \
83
+ --dataset_name "bigcode/the-stack-dedup" \
84
+ --subset "data/elixir" \
85
+ --data_column "content" \
86
+ --split "train" \
87
+ --seq_length 2048 \
88
+ --max_steps 2000 \
89
+ --batch_size 4 \
90
+ --gradient_accumulation_steps 4 \
91
+ --learning_rate 5e-4 \
92
+ --lr_scheduler_type "cosine" \
93
+ --weight_decay 0.01 \
94
+ --num_warmup_steps 30 \
95
+ --eval_freq 100 \
96
+ --save_freq 100 \
97
+ --log_freq 25 \
98
+ --num_workers 4 \
99
+ --bf16 \
100
+ --no_fp16 \
101
+ --output_dir "peft-lora-starcoderbase-3b-personal-copilot-rtx4090-elixir" \
102
+ --push_to_hub "false" \
103
+ --fim_rate 0.5 \
104
+ --fim_spm_rate 0.5 \
105
+ --use_flash_attn \
106
+ --use_peft_lora \
107
+ --lora_r 32 \
108
+ --lora_alpha 64 \
109
+ --lora_dropout 0.0 \
110
+ --lora_target_modules "c_proj,c_attn,q_attn,c_fc,c_proj" \
111
+ --use_4bit_qunatization \
112
+ --use_nested_quant \
113
+ --bnb_4bit_compute_dtype "bfloat16"
114
+ ```
115
+
116
+ #### Preprocessing
117
+
118
+ N/A
119
+
120
+
121
+ #### Training Hyperparameters
122
+
123
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
124
+
125
+ #### Speeds, Sizes, Times [optional]
126
+
127
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
128
+
129
+ [More Information Needed]
130
+
131
+ ## Evaluation
132
+
133
+ <!-- This section describes the evaluation protocols and provides the results. -->
134
+
135
+ ### Testing Data, Factors & Metrics
136
+
137
+ #### Testing Data
138
+
139
+ <!-- This should link to a Data Card if possible. -->
140
+
141
+ [More Information Needed]
142
+
143
+ #### Factors
144
+
145
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
146
+
147
+ [More Information Needed]
148
+
149
+ #### Metrics
150
+
151
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
152
+
153
+ [More Information Needed]
154
+
155
+ ### Results
156
+
157
+ [More Information Needed]
158
+
159
+ #### Summary
160
+
161
+
162
+
163
+ ## Model Examination [optional]
164
+
165
+ <!-- Relevant interpretability work for the model goes here -->
166
+
167
+ [More Information Needed]
168
+
169
+ ## Environmental Impact
170
+
171
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
172
+
173
+ NOTE the RTX-4090 is not available in the above estimator; will update once there is data available.
174
+
175
+ - **Hardware Type:** NVIDIA GeForce RTX 4090
176
+ - **Hours used:** 5h 20m 2s
177
+ - **Cloud Provider:** Local rig
178
+ - **Compute Region:** N/A
179
+ - **Carbon Emitted:** N/A
180
+
181
+ ## Technical Specifications [optional]
182
+
183
+ ### Model Architecture and Objective
184
+
185
+ [More Information Needed]
186
+
187
+ ### Compute Infrastructure
188
+
189
+ #### Hardware
190
+
191
+ Local DL rig with the following configuration:
192
+
193
+ - NVIDIA GeForce RTX 4090
194
+ - Intel(R) Core(TM) i7-7800X CPU @ 3.50GHz
195
+ - 128GB RAM
196
+
197
+
198
+ #### Software
199
+
200
+ [More Information Needed]
201
+
202
+ ## Citation [optional]
203
+
204
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
205
+
206
+ **BibTeX:**
207
+
208
+ [More Information Needed]
209
+
210
+ **APA:**
211
+
212
+ [More Information Needed]
213
+
214
+ ## Glossary [optional]
215
+
216
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
217
+
218
+ [More Information Needed]
219
+
220
+ ## More Information [optional]
221
+
222
+ [More Information Needed]
223
+
224
+ ## Model Card Authors [optional]
225
+
226
+ [More Information Needed]
227
+
228
+ ## Model Card Contact
229
+
230
+ [More Information Needed]
231
+
232
+
233
+ ## Training procedure
234
+
235
+
236
+ The following `bitsandbytes` quantization config was used during training:
237
+ - quant_method: bitsandbytes
238
+ - load_in_8bit: False
239
+ - load_in_4bit: True
240
+ - llm_int8_threshold: 6.0
241
+ - llm_int8_skip_modules: None
242
+ - llm_int8_enable_fp32_cpu_offload: False
243
+ - llm_int8_has_fp16_weight: False
244
+ - bnb_4bit_quant_type: nf4
245
+ - bnb_4bit_use_double_quant: True
246
+ - bnb_4bit_compute_dtype: bfloat16
247
+
248
+ ### Framework versions
249
+
250
+
251
+ - PEFT 0.6.2.dev0
adapter_config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "bigcode/starcoderbase-3b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 64,
12
+ "lora_dropout": 0.0,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 32,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "c_fc",
20
+ "c_attn",
21
+ "q_attn",
22
+ "c_proj"
23
+ ],
24
+ "task_type": "CAUSAL_LM"
25
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7bd241efe9ec35e87cb50340815e1ef471b939730d68c02d8b5fd2989019fb8f
3
+ size 91460408
final_checkpoint/README.md ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: bigcode/starcoderbase-3b
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Shared by [optional]:** [More Information Needed]
22
+ - **Model type:** [More Information Needed]
23
+ - **Language(s) (NLP):** [More Information Needed]
24
+ - **License:** [More Information Needed]
25
+ - **Finetuned from model [optional]:** [More Information Needed]
26
+
27
+ ### Model Sources [optional]
28
+
29
+ <!-- Provide the basic links for the model. -->
30
+
31
+ - **Repository:** [More Information Needed]
32
+ - **Paper [optional]:** [More Information Needed]
33
+ - **Demo [optional]:** [More Information Needed]
34
+
35
+ ## Uses
36
+
37
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
38
+
39
+ ### Direct Use
40
+
41
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
42
+
43
+ [More Information Needed]
44
+
45
+ ### Downstream Use [optional]
46
+
47
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Out-of-Scope Use
52
+
53
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
54
+
55
+ [More Information Needed]
56
+
57
+ ## Bias, Risks, and Limitations
58
+
59
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ### Recommendations
64
+
65
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
66
+
67
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
68
+
69
+ ## How to Get Started with the Model
70
+
71
+ Use the code below to get started with the model.
72
+
73
+ [More Information Needed]
74
+
75
+ ## Training Details
76
+
77
+ ### Training Data
78
+
79
+ <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
80
+
81
+ [More Information Needed]
82
+
83
+ ### Training Procedure
84
+
85
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
86
+
87
+ #### Preprocessing [optional]
88
+
89
+ [More Information Needed]
90
+
91
+
92
+ #### Training Hyperparameters
93
+
94
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
95
+
96
+ #### Speeds, Sizes, Times [optional]
97
+
98
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
99
+
100
+ [More Information Needed]
101
+
102
+ ## Evaluation
103
+
104
+ <!-- This section describes the evaluation protocols and provides the results. -->
105
+
106
+ ### Testing Data, Factors & Metrics
107
+
108
+ #### Testing Data
109
+
110
+ <!-- This should link to a Data Card if possible. -->
111
+
112
+ [More Information Needed]
113
+
114
+ #### Factors
115
+
116
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Metrics
121
+
122
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
123
+
124
+ [More Information Needed]
125
+
126
+ ### Results
127
+
128
+ [More Information Needed]
129
+
130
+ #### Summary
131
+
132
+
133
+
134
+ ## Model Examination [optional]
135
+
136
+ <!-- Relevant interpretability work for the model goes here -->
137
+
138
+ [More Information Needed]
139
+
140
+ ## Environmental Impact
141
+
142
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
143
+
144
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
145
+
146
+ - **Hardware Type:** [More Information Needed]
147
+ - **Hours used:** [More Information Needed]
148
+ - **Cloud Provider:** [More Information Needed]
149
+ - **Compute Region:** [More Information Needed]
150
+ - **Carbon Emitted:** [More Information Needed]
151
+
152
+ ## Technical Specifications [optional]
153
+
154
+ ### Model Architecture and Objective
155
+
156
+ [More Information Needed]
157
+
158
+ ### Compute Infrastructure
159
+
160
+ [More Information Needed]
161
+
162
+ #### Hardware
163
+
164
+ [More Information Needed]
165
+
166
+ #### Software
167
+
168
+ [More Information Needed]
169
+
170
+ ## Citation [optional]
171
+
172
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
173
+
174
+ **BibTeX:**
175
+
176
+ [More Information Needed]
177
+
178
+ **APA:**
179
+
180
+ [More Information Needed]
181
+
182
+ ## Glossary [optional]
183
+
184
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
185
+
186
+ [More Information Needed]
187
+
188
+ ## More Information [optional]
189
+
190
+ [More Information Needed]
191
+
192
+ ## Model Card Authors [optional]
193
+
194
+ [More Information Needed]
195
+
196
+ ## Model Card Contact
197
+
198
+ [More Information Needed]
199
+
200
+
201
+ ## Training procedure
202
+
203
+
204
+ The following `bitsandbytes` quantization config was used during training:
205
+ - quant_method: bitsandbytes
206
+ - load_in_8bit: False
207
+ - load_in_4bit: True
208
+ - llm_int8_threshold: 6.0
209
+ - llm_int8_skip_modules: None
210
+ - llm_int8_enable_fp32_cpu_offload: False
211
+ - llm_int8_has_fp16_weight: False
212
+ - bnb_4bit_quant_type: nf4
213
+ - bnb_4bit_use_double_quant: True
214
+ - bnb_4bit_compute_dtype: bfloat16
215
+
216
+ ### Framework versions
217
+
218
+
219
+ - PEFT 0.6.2.dev0
final_checkpoint/adapter_config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "bigcode/starcoderbase-3b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 64,
12
+ "lora_dropout": 0.0,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 32,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "c_fc",
20
+ "c_attn",
21
+ "q_attn",
22
+ "c_proj"
23
+ ],
24
+ "task_type": "CAUSAL_LM"
25
+ }
final_checkpoint/adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4e82360cf896135a6a3bcdf57560732cb874d5a61e6fb82487a215f6a313434
3
+ size 91525898