Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +107 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1527.35 +/- 59.46
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5ad43ef2802892c89d730e636900e2a29d0d3fc96143daa26652e77b2f945959
|
3 |
+
size 129242
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7cadecef7be0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7cadecef7c70>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7cadecef7d00>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7cadecef7d90>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7cadecef7e20>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7cadecef7eb0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7cadecef7f40>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7cadecef8040>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7cadecef80d0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7cadecef8160>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7cadecef81f0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7cadecef8280>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7cadecefd680>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"num_timesteps": 2000000,
|
36 |
+
"_total_timesteps": 2000000,
|
37 |
+
"_num_timesteps_at_start": 0,
|
38 |
+
"seed": null,
|
39 |
+
"action_noise": null,
|
40 |
+
"start_time": 1690459349290861877,
|
41 |
+
"learning_rate": 0.00096,
|
42 |
+
"tensorboard_log": null,
|
43 |
+
"lr_schedule": {
|
44 |
+
":type:": "<class 'function'>",
|
45 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
46 |
+
},
|
47 |
+
"_last_obs": {
|
48 |
+
":type:": "<class 'numpy.ndarray'>",
|
49 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAALYXu750zFE/k3Pyvqootb6vZVA/t05EP1lWOL1x/zG9GCZJv7IE4j9yLsO9SjrJv14guL4+ZV0/A+8mvfKFJr9yl7k+ng6PPrAm/T4jMS0+6pCBPxsypb2YlHE9EcUcv3YVYL+1XTs/3M3IPt9X6D4+Qpu+LvZSPsVE8z6aWmS+pAB7P7IuIT//Jxi//wLYPhBmSr9lO6G869xqvrJO4j+gv2i/eG3Lvw54nz9sLyI8Dapzv2n9zT9zJ4a+tZz4P357Lz+jAyA9W/owvYg7nj8iO5I/OuOuvxIvI8DfV+g+NGVlv2vg4z6ZN2I+NoljPqJ7dD+JfZk+4MkVvmBjJz53ZZS/yQ47P7Kfur6/vT6/+cABvuB/Lj+y/Zc+/mYYvxVArb5K72Y9wScTP3jMxDzPew2+Dfg+vtFlE783qIq/IjuSP7VdOz/czcg+31foPtDBL0DIV4a/XS2MP0C/dr/etOO/T+iiv/+DxL+KDgO/y9XHP2ZCnj87y6q/+71NQJCmtD2j76W/Jt40QLSLnjx9aOU/26SnPhvF7D6kbL3AEvjCP6Eqlj+VTLQ9RoXJQHYVYL86466/Ei8jwGAIDcCUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
50 |
+
},
|
51 |
+
"_last_episode_starts": {
|
52 |
+
":type:": "<class 'numpy.ndarray'>",
|
53 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
54 |
+
},
|
55 |
+
"_last_original_obs": {
|
56 |
+
":type:": "<class 'numpy.ndarray'>",
|
57 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAnNiu2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAkZMyPQAAAACSHfi/AAAAAByYGT0AAAAAZUHePwAAAAAVrMi9AAAAAGPP5j8AAAAAXKqdOwAAAADZWuy/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxQLZtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPaCaD0AAAAA40jnvwAAAACBt528AAAAAMVv7D8AAAAAGpdNvQAAAABJbeg/AAAAAKxGb70AAAAANcz7vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMHZDbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBrCQ8+AAAAAKnmAMAAAAAAKH4AvQAAAADG4ec/AAAAAFWJXz0AAAAAf+bmPwAAAAC+YJW8AAAAACyS+r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAw0G0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAt3JkPQAAAADVmOG/AAAAABswnr0AAAAAX5HmPwAAAADMASs9AAAAABNN/z8AAAAAEYSsvQAAAAAqVfW/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
58 |
+
},
|
59 |
+
"_episode_num": 0,
|
60 |
+
"use_sde": true,
|
61 |
+
"sde_sample_freq": -1,
|
62 |
+
"_current_progress_remaining": 0.0,
|
63 |
+
"_stats_window_size": 100,
|
64 |
+
"ep_info_buffer": {
|
65 |
+
":type:": "<class 'collections.deque'>",
|
66 |
+
":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJGcKFrVOKyMAWyUTegDjAF0lEdAqgKC1og3cnV9lChoBkdAk69Xl4keIWgHTegDaAhHQKoEV/lyR0V1fZQoaAZHQJRJSvC/Gl1oB03oA2gIR0CqCQGQKa5PdX2UKGgGR0CU+G0HyEteaAdN6ANoCEdAqgwlNYbKinV9lChoBkdAlGamw7kn1GgHTegDaAhHQKoO46EJ0GN1fZQoaAZHQJLzneoDPnloB03oA2gIR0CqELtTkyULdX2UKGgGR0CS6H0QK8cuaAdN6ANoCEdAqhZMMgEEDHV9lChoBkdAlImNVJcxCmgHTegDaAhHQKobX8k2P1d1fZQoaAZHQI+NOnGbTc9oB03oA2gIR0CqHigeii7DdX2UKGgGR0CSZFuFpPAPaAdN6ANoCEdAqh/9AkcCHXV9lChoBkdAlEjMqBmPHWgHTegDaAhHQKok4HP/rB11fZQoaAZHQJKlb5ftx+9oB03oA2gIR0CqKCeU6gdwdX2UKGgGR0CTcvWmP5pKaAdN6ANoCEdAqirqN6w+uHV9lChoBkdAlUe4t16mf2gHTegDaAhHQKosyeFtbcJ1fZQoaAZHQJS2LlLeyiVoB03oA2gIR0CqMpLs8gZCdX2UKGgGR0CTP2paiblSaAdN6ANoCEdAqjeC9/SYxHV9lChoBkdAlkF8ANoak2gHTegDaAhHQKo6QbrkbP11fZQoaAZHQJViqweNkvtoB03oA2gIR0CqPEELQXyidX2UKGgGR0CUkCQHRkVfaAdN6ANoCEdAqkEM/D+BH3V9lChoBkdAks+SzcAR02gHTegDaAhHQKpERwKBuoB1fZQoaAZHQJMR9qzqrzZoB03oA2gIR0CqRwfEGZ/kdX2UKGgGR0CVjXdH2AXmaAdN6ANoCEdAqkjs+1SflXV9lChoBkdAlEj8zZYgaGgHTegDaAhHQKpPICQtBfN1fZQoaAZHQI9vBSBK+SNoB03oA2gIR0CqU8tZvDP4dX2UKGgGR0CTS9k6tDD1aAdN6ANoCEdAqlaHL9uP3nV9lChoBkdAkYxhWxQizWgHTegDaAhHQKpYZ9/jKgZ1fZQoaAZHQJX+zisGPghoB03oA2gIR0CqXSjl5nlGdX2UKGgGR0CTUcPxQSBcaAdN6ANoCEdAqmBPECNjsnV9lChoBkdAknz6eXiR4mgHTegDaAhHQKpjK7Dl5nl1fZQoaAZHQI6goiJO32FoB03oA2gIR0CqZQGNBF/hdX2UKGgGR0COIv/S6UaAaAdN6ANoCEdAqmteEPDpDHV9lChoBkdAj52RQBPsRmgHTegDaAhHQKpvusS00Fd1fZQoaAZHQJRo1K15Sm9oB03oA2gIR0CqcnN6HCXQdX2UKGgGR0CS63SuyNXHaAdN6ANoCEdAqnRWCXhOxnV9lChoBkdAkXWsA7xNI2gHTegDaAhHQKp5PtAs0551fZQoaAZHQI9O3HR1HONoB03oA2gIR0CqfIRubZvldX2UKGgGR0B84C9h7VriaAdN6ANoCEdAqn9MYqG1yHV9lChoBkdAk4KCG8EmpmgHTegDaAhHQKqBKjL0SRN1fZQoaAZHQHHpxc/t6X1oB03oA2gIR0CqiDWEkB0ZdX2UKGgGR8BKOs3IdU83aAdLYmgIR0Cqij9jG1hLdX2UKGgGR0CS/9tPHktFaAdN6ANoCEdAqow2tnwocHV9lChoBkdAh2kHm7rcCmgHTegDaAhHQKqO/zbN8md1fZQoaAZHQIKBqOJcgQpoB03oA2gIR0CqkOeZ5Rj0dX2UKGgGR0CQw2wX668QaAdN6ANoCEdAqpbqiAUcn3V9lChoBkdAjFWHVG0/nmgHTegDaAhHQKqY2uyNXHR1fZQoaAZHQIK3AGY8dPtoB03oA2gIR0Cqm6e+ueSTdX2UKGgGR0COFPTxXnyNaAdN6ANoCEdAqp2UutfXw3V9lChoBkdAktSrIkqto2gHTegDaAhHQKqme/pMYdh1fZQoaAZHQJNBDPVurIZoB03oA2gIR0CqqGwkona4dX2UKGgGR0CTbwZ2pyZKaAdN6ANoCEdAqqtIPCl7+nV9lChoBkdAhT3Qr1/UfGgHTegDaAhHQKqtGnssxwh1fZQoaAZHQJEVpxS5y2hoB03oA2gIR0CqsxM23rledX2UKGgGR0CVuXuL74zraAdN6ANoCEdAqrUekUKzA3V9lChoBkdAllyLDZUT+WgHTegDaAhHQKq4AoegctJ1fZQoaAZHQJSrmUB4lhRoB03oA2gIR0CqugzURWcSdX2UKGgGR0CNKyFEiMYNaAdN6ANoCEdAqsLNJnQIEHV9lChoBkdAkntZZr56+mgHTegDaAhHQKrEx/sE7nx1fZQoaAZHQJSA7TAnDzloB03oA2gIR0Cqx4/xUedTdX2UKGgGR0CR6nFS88LbaAdN6ANoCEdAqsl57RfF73V9lChoBkdAlOeEkB0ZFWgHTegDaAhHQKrPiIoE0SB1fZQoaAZHQJHF1Rk3CKtoB03oA2gIR0Cq0Yi+De0pdX2UKGgGR0CVMWlnAZbZaAdN6ANoCEdAqtRfK8tf5XV9lChoBkdAlQGngtOEd2gHTegDaAhHQKrW8Pgeii91fZQoaAZHQJV+SG7BfrtoB03oA2gIR0Cq328/lhgFdX2UKGgGR0CSMIUcGTs6aAdN6ANoCEdAquFgI6bONnV9lChoBkdAkm4plSS/02gHTegDaAhHQKrkNOgxrSF1fZQoaAZHQJJGcdjoZAJoB03oA2gIR0Cq5iLTQVsUdX2UKGgGR0CVHDUHpr1vaAdN6ANoCEdAquwuhoM8YHV9lChoBkdAkT1/mLcbi2gHTegDaAhHQKruMOI68xt1fZQoaAZHQJU2yVu76HloB03oA2gIR0Cq8O3DFZPmdX2UKGgGR0CVf+1IAfdRaAdN6ANoCEdAqvPgL/jsEHV9lChoBkdAk8hBqTKT0WgHTegDaAhHQKr7vQ1rIo51fZQoaAZHQJUsB5t3wCtoB03oA2gIR0Cq/bF7tzCDdX2UKGgGR0CTM68/D+BIaAdN6ANoCEdAqwBpLK3d9HV9lChoBkdAlVcMMI/qxGgHTegDaAhHQKsCPsKLKmt1fZQoaAZHQJKSTxDst05oB03oA2gIR0CrCD1zp5eJdX2UKGgGR0CVTQUwztTlaAdN6ANoCEdAqworJIUah3V9lChoBkdAkukRagVXWGgHTegDaAhHQKsNCFh5Pdl1fZQoaAZHQJQzQXqJMxpoB03oA2gIR0CrD/uxrzoVdX2UKGgGR0B5J/0ulGgBaAdN6ANoCEdAqxf7+vQnhXV9lChoBkdAlNjILgGbC2gHTegDaAhHQKsZ+NaQmu11fZQoaAZHQJK8bUMG5c1oB03oA2gIR0CrHMn+6y0KdX2UKGgGR0CUo8zT4L1FaAdN6ANoCEdAqx6pwyZa3nV9lChoBkdAkvaimygPE2gHTegDaAhHQKskofJV81J1fZQoaAZHQI+exQLux8loB03oA2gIR0CrJp35vcagdX2UKGgGR0CWUsDrJKaoaAdN6ANoCEdAqynRFspG4XV9lChoBkdAeEvdDIBBA2gHTegDaAhHQKss1rqt5lh1fZQoaAZHQJcSfcSGrS5oB03oA2gIR0CrNFS+g13udX2UKGgGR0CXbz9Zid8RaAdN6ANoCEdAqzZF1W8yvnV9lChoBkdAlgsVzQu27WgHTegDaAhHQKs5ALJCBwx1fZQoaAZHQJPJq+TNdJJoB03oA2gIR0CrOtx/NJOGdX2UKGgGR0CUjTAi3XqaaAdN6ANoCEdAq0DafJ3gUHV9lChoBkdAlV5Y7FKkEmgHTegDaAhHQKtC0ocaOxV1fZQoaAZHQJM6o580DU5oB03oA2gIR0CrRjM189fUdX2UKGgGR0CWJwjNIK+jaAdN6ANoCEdAq0kgH1OCXnV9lChoBkdAliRZkbxVhmgHTegDaAhHQKtQcp6QeV91fZQoaAZHQJWsVkCmuT1oB03oA2gIR0CrUnN+so2GdX2UKGgGR0CVsUFEiMYNaAdN6ANoCEdAq1VJvegte3V9lChoBkdAl5WATAWSEGgHTegDaAhHQKtXH8IAwPB1fZQoaAZHQJX/IJE6T4doB03oA2gIR0CrXQ51V5rydWUu"
|
67 |
+
},
|
68 |
+
"ep_success_buffer": {
|
69 |
+
":type:": "<class 'collections.deque'>",
|
70 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
71 |
+
},
|
72 |
+
"_n_updates": 62500,
|
73 |
+
"n_steps": 8,
|
74 |
+
"gamma": 0.99,
|
75 |
+
"gae_lambda": 0.9,
|
76 |
+
"ent_coef": 0.0,
|
77 |
+
"vf_coef": 0.4,
|
78 |
+
"max_grad_norm": 0.5,
|
79 |
+
"normalize_advantage": false,
|
80 |
+
"observation_space": {
|
81 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
82 |
+
":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
83 |
+
"dtype": "float32",
|
84 |
+
"_shape": [
|
85 |
+
28
|
86 |
+
],
|
87 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
88 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
89 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
90 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
91 |
+
"_np_random": null
|
92 |
+
},
|
93 |
+
"action_space": {
|
94 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
95 |
+
":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
96 |
+
"dtype": "float32",
|
97 |
+
"_shape": [
|
98 |
+
8
|
99 |
+
],
|
100 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
101 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
102 |
+
"bounded_below": "[ True True True True True True True True]",
|
103 |
+
"bounded_above": "[ True True True True True True True True]",
|
104 |
+
"_np_random": null
|
105 |
+
},
|
106 |
+
"n_envs": 4
|
107 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5ec07b794b6b76855daee2f78b4e7be858083cebcf653ef64ad595f2d56252a8
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d6d6c3e319e5011ddc024cad14c74ed6d70b8f45bdb3ce3a873e69317a029242
|
3 |
+
size 56894
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.6
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7cadecef7be0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7cadecef7c70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7cadecef7d00>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7cadecef7d90>", "_build": "<function ActorCriticPolicy._build at 0x7cadecef7e20>", "forward": "<function ActorCriticPolicy.forward at 0x7cadecef7eb0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7cadecef7f40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7cadecef8040>", "_predict": "<function ActorCriticPolicy._predict at 0x7cadecef80d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7cadecef8160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7cadecef81f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7cadecef8280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7cadecefd680>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690459349290861877, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAALYXu750zFE/k3Pyvqootb6vZVA/t05EP1lWOL1x/zG9GCZJv7IE4j9yLsO9SjrJv14guL4+ZV0/A+8mvfKFJr9yl7k+ng6PPrAm/T4jMS0+6pCBPxsypb2YlHE9EcUcv3YVYL+1XTs/3M3IPt9X6D4+Qpu+LvZSPsVE8z6aWmS+pAB7P7IuIT//Jxi//wLYPhBmSr9lO6G869xqvrJO4j+gv2i/eG3Lvw54nz9sLyI8Dapzv2n9zT9zJ4a+tZz4P357Lz+jAyA9W/owvYg7nj8iO5I/OuOuvxIvI8DfV+g+NGVlv2vg4z6ZN2I+NoljPqJ7dD+JfZk+4MkVvmBjJz53ZZS/yQ47P7Kfur6/vT6/+cABvuB/Lj+y/Zc+/mYYvxVArb5K72Y9wScTP3jMxDzPew2+Dfg+vtFlE783qIq/IjuSP7VdOz/czcg+31foPtDBL0DIV4a/XS2MP0C/dr/etOO/T+iiv/+DxL+KDgO/y9XHP2ZCnj87y6q/+71NQJCmtD2j76W/Jt40QLSLnjx9aOU/26SnPhvF7D6kbL3AEvjCP6Eqlj+VTLQ9RoXJQHYVYL86466/Ei8jwGAIDcCUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAnNiu2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAkZMyPQAAAACSHfi/AAAAAByYGT0AAAAAZUHePwAAAAAVrMi9AAAAAGPP5j8AAAAAXKqdOwAAAADZWuy/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxQLZtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPaCaD0AAAAA40jnvwAAAACBt528AAAAAMVv7D8AAAAAGpdNvQAAAABJbeg/AAAAAKxGb70AAAAANcz7vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMHZDbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBrCQ8+AAAAAKnmAMAAAAAAKH4AvQAAAADG4ec/AAAAAFWJXz0AAAAAf+bmPwAAAAC+YJW8AAAAACyS+r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAw0G0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAt3JkPQAAAADVmOG/AAAAABswnr0AAAAAX5HmPwAAAADMASs9AAAAABNN/z8AAAAAEYSsvQAAAAAqVfW/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJGcKFrVOKyMAWyUTegDjAF0lEdAqgKC1og3cnV9lChoBkdAk69Xl4keIWgHTegDaAhHQKoEV/lyR0V1fZQoaAZHQJRJSvC/Gl1oB03oA2gIR0CqCQGQKa5PdX2UKGgGR0CU+G0HyEteaAdN6ANoCEdAqgwlNYbKinV9lChoBkdAlGamw7kn1GgHTegDaAhHQKoO46EJ0GN1fZQoaAZHQJLzneoDPnloB03oA2gIR0CqELtTkyULdX2UKGgGR0CS6H0QK8cuaAdN6ANoCEdAqhZMMgEEDHV9lChoBkdAlImNVJcxCmgHTegDaAhHQKobX8k2P1d1fZQoaAZHQI+NOnGbTc9oB03oA2gIR0CqHigeii7DdX2UKGgGR0CSZFuFpPAPaAdN6ANoCEdAqh/9AkcCHXV9lChoBkdAlEjMqBmPHWgHTegDaAhHQKok4HP/rB11fZQoaAZHQJKlb5ftx+9oB03oA2gIR0CqKCeU6gdwdX2UKGgGR0CTcvWmP5pKaAdN6ANoCEdAqirqN6w+uHV9lChoBkdAlUe4t16mf2gHTegDaAhHQKosyeFtbcJ1fZQoaAZHQJS2LlLeyiVoB03oA2gIR0CqMpLs8gZCdX2UKGgGR0CTP2paiblSaAdN6ANoCEdAqjeC9/SYxHV9lChoBkdAlkF8ANoak2gHTegDaAhHQKo6QbrkbP11fZQoaAZHQJViqweNkvtoB03oA2gIR0CqPEELQXyidX2UKGgGR0CUkCQHRkVfaAdN6ANoCEdAqkEM/D+BH3V9lChoBkdAks+SzcAR02gHTegDaAhHQKpERwKBuoB1fZQoaAZHQJMR9qzqrzZoB03oA2gIR0CqRwfEGZ/kdX2UKGgGR0CVjXdH2AXmaAdN6ANoCEdAqkjs+1SflXV9lChoBkdAlEj8zZYgaGgHTegDaAhHQKpPICQtBfN1fZQoaAZHQI9vBSBK+SNoB03oA2gIR0CqU8tZvDP4dX2UKGgGR0CTS9k6tDD1aAdN6ANoCEdAqlaHL9uP3nV9lChoBkdAkYxhWxQizWgHTegDaAhHQKpYZ9/jKgZ1fZQoaAZHQJX+zisGPghoB03oA2gIR0CqXSjl5nlGdX2UKGgGR0CTUcPxQSBcaAdN6ANoCEdAqmBPECNjsnV9lChoBkdAknz6eXiR4mgHTegDaAhHQKpjK7Dl5nl1fZQoaAZHQI6goiJO32FoB03oA2gIR0CqZQGNBF/hdX2UKGgGR0COIv/S6UaAaAdN6ANoCEdAqmteEPDpDHV9lChoBkdAj52RQBPsRmgHTegDaAhHQKpvusS00Fd1fZQoaAZHQJRo1K15Sm9oB03oA2gIR0CqcnN6HCXQdX2UKGgGR0CS63SuyNXHaAdN6ANoCEdAqnRWCXhOxnV9lChoBkdAkXWsA7xNI2gHTegDaAhHQKp5PtAs0551fZQoaAZHQI9O3HR1HONoB03oA2gIR0CqfIRubZvldX2UKGgGR0B84C9h7VriaAdN6ANoCEdAqn9MYqG1yHV9lChoBkdAk4KCG8EmpmgHTegDaAhHQKqBKjL0SRN1fZQoaAZHQHHpxc/t6X1oB03oA2gIR0CqiDWEkB0ZdX2UKGgGR8BKOs3IdU83aAdLYmgIR0Cqij9jG1hLdX2UKGgGR0CS/9tPHktFaAdN6ANoCEdAqow2tnwocHV9lChoBkdAh2kHm7rcCmgHTegDaAhHQKqO/zbN8md1fZQoaAZHQIKBqOJcgQpoB03oA2gIR0CqkOeZ5Rj0dX2UKGgGR0CQw2wX668QaAdN6ANoCEdAqpbqiAUcn3V9lChoBkdAjFWHVG0/nmgHTegDaAhHQKqY2uyNXHR1fZQoaAZHQIK3AGY8dPtoB03oA2gIR0Cqm6e+ueSTdX2UKGgGR0COFPTxXnyNaAdN6ANoCEdAqp2UutfXw3V9lChoBkdAktSrIkqto2gHTegDaAhHQKqme/pMYdh1fZQoaAZHQJNBDPVurIZoB03oA2gIR0CqqGwkona4dX2UKGgGR0CTbwZ2pyZKaAdN6ANoCEdAqqtIPCl7+nV9lChoBkdAhT3Qr1/UfGgHTegDaAhHQKqtGnssxwh1fZQoaAZHQJEVpxS5y2hoB03oA2gIR0CqsxM23rledX2UKGgGR0CVuXuL74zraAdN6ANoCEdAqrUekUKzA3V9lChoBkdAllyLDZUT+WgHTegDaAhHQKq4AoegctJ1fZQoaAZHQJSrmUB4lhRoB03oA2gIR0CqugzURWcSdX2UKGgGR0CNKyFEiMYNaAdN6ANoCEdAqsLNJnQIEHV9lChoBkdAkntZZr56+mgHTegDaAhHQKrEx/sE7nx1fZQoaAZHQJSA7TAnDzloB03oA2gIR0Cqx4/xUedTdX2UKGgGR0CR6nFS88LbaAdN6ANoCEdAqsl57RfF73V9lChoBkdAlOeEkB0ZFWgHTegDaAhHQKrPiIoE0SB1fZQoaAZHQJHF1Rk3CKtoB03oA2gIR0Cq0Yi+De0pdX2UKGgGR0CVMWlnAZbZaAdN6ANoCEdAqtRfK8tf5XV9lChoBkdAlQGngtOEd2gHTegDaAhHQKrW8Pgeii91fZQoaAZHQJV+SG7BfrtoB03oA2gIR0Cq328/lhgFdX2UKGgGR0CSMIUcGTs6aAdN6ANoCEdAquFgI6bONnV9lChoBkdAkm4plSS/02gHTegDaAhHQKrkNOgxrSF1fZQoaAZHQJJGcdjoZAJoB03oA2gIR0Cq5iLTQVsUdX2UKGgGR0CVHDUHpr1vaAdN6ANoCEdAquwuhoM8YHV9lChoBkdAkT1/mLcbi2gHTegDaAhHQKruMOI68xt1fZQoaAZHQJU2yVu76HloB03oA2gIR0Cq8O3DFZPmdX2UKGgGR0CVf+1IAfdRaAdN6ANoCEdAqvPgL/jsEHV9lChoBkdAk8hBqTKT0WgHTegDaAhHQKr7vQ1rIo51fZQoaAZHQJUsB5t3wCtoB03oA2gIR0Cq/bF7tzCDdX2UKGgGR0CTM68/D+BIaAdN6ANoCEdAqwBpLK3d9HV9lChoBkdAlVcMMI/qxGgHTegDaAhHQKsCPsKLKmt1fZQoaAZHQJKSTxDst05oB03oA2gIR0CrCD1zp5eJdX2UKGgGR0CVTQUwztTlaAdN6ANoCEdAqworJIUah3V9lChoBkdAkukRagVXWGgHTegDaAhHQKsNCFh5Pdl1fZQoaAZHQJQzQXqJMxpoB03oA2gIR0CrD/uxrzoVdX2UKGgGR0B5J/0ulGgBaAdN6ANoCEdAqxf7+vQnhXV9lChoBkdAlNjILgGbC2gHTegDaAhHQKsZ+NaQmu11fZQoaAZHQJK8bUMG5c1oB03oA2gIR0CrHMn+6y0KdX2UKGgGR0CUo8zT4L1FaAdN6ANoCEdAqx6pwyZa3nV9lChoBkdAkvaimygPE2gHTegDaAhHQKskofJV81J1fZQoaAZHQI+exQLux8loB03oA2gIR0CrJp35vcagdX2UKGgGR0CWUsDrJKaoaAdN6ANoCEdAqynRFspG4XV9lChoBkdAeEvdDIBBA2gHTegDaAhHQKss1rqt5lh1fZQoaAZHQJcSfcSGrS5oB03oA2gIR0CrNFS+g13udX2UKGgGR0CXbz9Zid8RaAdN6ANoCEdAqzZF1W8yvnV9lChoBkdAlgsVzQu27WgHTegDaAhHQKs5ALJCBwx1fZQoaAZHQJPJq+TNdJJoB03oA2gIR0CrOtx/NJOGdX2UKGgGR0CUjTAi3XqaaAdN6ANoCEdAq0DafJ3gUHV9lChoBkdAlV5Y7FKkEmgHTegDaAhHQKtC0ocaOxV1fZQoaAZHQJM6o580DU5oB03oA2gIR0CrRjM189fUdX2UKGgGR0CWJwjNIK+jaAdN6ANoCEdAq0kgH1OCXnV9lChoBkdAliRZkbxVhmgHTegDaAhHQKtQcp6QeV91fZQoaAZHQJWsVkCmuT1oB03oA2gIR0CrUnN+so2GdX2UKGgGR0CVsUFEiMYNaAdN6ANoCEdAq1VJvegte3V9lChoBkdAl5WATAWSEGgHTegDaAhHQKtXH8IAwPB1fZQoaAZHQJX/IJE6T4doB03oA2gIR0CrXQ51V5rydWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b183ef201ac920869f43bbbcabd45b20e2bfa99a263e2c6e59608528d017a064
|
3 |
+
size 1003677
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1527.3520815436846, "std_reward": 59.463108736037064, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-27T13:03:08.952191"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9759c6d17aabd1f1f5891f6842ead98f314790d67fbb6e7f5a122080974a84b3
|
3 |
+
size 2176
|