arnabdhar commited on
Commit
5e36791
·
unverified ·
1 Parent(s): d4cd784

Updated README.md

Browse files
Files changed (1) hide show
  1. README.md +64 -4
README.md CHANGED
@@ -1,11 +1,15 @@
1
  ---
 
2
  tags:
3
  - ultralytics
4
  - yolov8
5
- - object-detection
6
  - pytorch
 
7
  library_name: ultralytics
8
  library_version: 8.0.198
 
 
 
9
  ---
10
  # YOLOv8 model to detect import texts on an Aadhar Card
11
 
@@ -15,7 +19,14 @@ Aadhaar Card text detection is the process of identifying and extracting text fr
15
 
16
  One approach to Aadhaar Card text detection is to use YOLOv8, a state-of-the-art object detection model. YOLOv8 can be trained to detect a variety of object classes, including text. Once trained, YOLOv8 can be used to detect text in Aadhaar Card images and extract the text to a text file or other format.
17
 
18
- ## Getting Started with Inference
 
 
 
 
 
 
 
19
 
20
  ### Install Dependencies
21
 
@@ -28,7 +39,56 @@ $ pip install ultralytics huggingface_hub supervision
28
  ```python
29
  from ultralytics import YOLO
30
  from huggingface_hub import hf_hub_download
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
 
32
- # l.oad model
33
 
34
- ```
 
 
1
  ---
2
+ license: apache-2.0
3
  tags:
4
  - ultralytics
5
  - yolov8
 
6
  - pytorch
7
+ pipelline_tag: object-detection
8
  library_name: ultralytics
9
  library_version: 8.0.198
10
+ metrics:
11
+ - recall
12
+ - precision
13
  ---
14
  # YOLOv8 model to detect import texts on an Aadhar Card
15
 
 
19
 
20
  One approach to Aadhaar Card text detection is to use YOLOv8, a state-of-the-art object detection model. YOLOv8 can be trained to detect a variety of object classes, including text. Once trained, YOLOv8 can be used to detect text in Aadhaar Card images and extract the text to a text file or other format.
21
 
22
+ ## Inference
23
+
24
+ ### Supported Labels
25
+
26
+ ```python
27
+ # label_id: label_name
28
+ {0: "AADHAR_NUMBER", 1: "DATE_OF_BIRTH", 2: "GENDER", 3: "NAME", 4: "ADDRESS"}
29
+ ```
30
 
31
  ### Install Dependencies
32
 
 
39
  ```python
40
  from ultralytics import YOLO
41
  from huggingface_hub import hf_hub_download
42
+ from supervision import Detections
43
+
44
+ # repo details
45
+ repo_config = dict(
46
+ repo_id = "arnabdhar/YOLOv8-nano-aadhar-card",
47
+ filename = "model.pt",
48
+ local_dir = "./models"
49
+ )
50
+
51
+ # load model
52
+ model = YOLO(hf_hub_download(**repo_config))
53
+
54
+ # get id to label mapping
55
+ id2label = model.names
56
+ print(id2label)
57
+
58
+ # Perform Inference
59
+ image_url = "https://i.pinimg.com/originals/08/6d/82/086d820550f34066764f4047ddc263ca.jpg"
60
+
61
+ detections = Detections.from_ultralytics(model.predict(image_url)[0])
62
+
63
+ print(detections)
64
+
65
+ ```
66
+
67
+ ## Fine Tuning
68
+
69
+ The following hyperparameters were used to finetune the model
70
+
71
+ ```yaml
72
+ model: yolov8n.pt
73
+ batch: 4
74
+ epochs: 100
75
+ optimizer: AdamW
76
+ warmup_epochs: 15
77
+ seed: 42
78
+ imgsz: 640
79
+ ```
80
+
81
+ The following evaluation metrics were achieved by `best.pt` for bounding box predictions:
82
+
83
+ ```yaml
84
+ recall: 0.962
85
+ precision: 0.973
86
+ mAP50: 0.963
87
+ mAP50_95: 0.748
88
+ ```
89
+
90
 
91
+ ## Dataset
92
 
93
+ + __Source__: Roboflow Universe
94
+ + __Dataset URL__: https://universe.roboflow.com/jizo/aadhar-card-entity-detection