File size: 1,753 Bytes
fb2ee91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88c5804
 
fb2ee91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88c5804
fb2ee91
 
 
 
 
 
88c5804
 
 
 
 
fb2ee91
 
 
 
 
 
8a0f57f
fb2ee91
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: mit
base_model: facebook/esm2_t33_650M_UR50D
tags:
- generated_from_trainer
metrics:
- spearmanr
model-index:
- name: esm2_t33_650M_UR50D-finetuned-Ab14H-v1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# esm2_t33_650M_UR50D-finetuned-Ab14H-v1

This model is a fine-tuned version of [facebook/esm2_t33_650M_UR50D](https://huggingface.co/facebook/esm2_t33_650M_UR50D) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1045
- Spearmanr: 0.6618

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Spearmanr |
|:-------------:|:-----:|:----:|:---------------:|:---------:|
| 3.0658        | 1.0   | 643  | 1.2677          | 0.6347    |
| 1.3185        | 2.0   | 1286 | 1.1780          | 0.6502    |
| 1.1867        | 3.0   | 1929 | 1.1368          | 0.6568    |
| 1.0087        | 4.0   | 2572 | 1.0889          | 0.6640    |
| 0.864         | 5.0   | 3215 | 1.1045          | 0.6618    |


### Framework versions

- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1