File size: 2,771 Bytes
218a615 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
---
library_name: transformers
license: other
base_model: Qwen/Qwen2.5-3B
tags:
- generated_from_trainer
model-index:
- name: outputs/gelato-3b
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
base_model: Qwen/Qwen2.5-3B
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: arcee-ai/eval_tome
type: sharegpt
conversation: chatml
- path: arcee-ai/math_code_5k_claude
type: sharegpt
conversation: chatml
split: validation
- path: Undi95/Capybara-ShareGPT
type: sharegpt
conversation: chatml
dataset_prepared_path:
val_set_size: 0.0
sequence_len: 8192
sample_packing: true
lora_fan_in_fan_out:
wandb_project: qwen2.5-3b-gelato
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
output_dir: ./outputs/gelato-3b
gradient_accumulation_steps: 8
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_bnb_8bit
torchdistx_path:
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
gptq_groupsize:
s2_attention:
gptq_model_v1:
warmup_steps: 50
evals_per_epoch:
saves_per_epoch: 1
debug:
deepspeed: deepspeed_configs/zero3_bf16_cpuoffload_params.json
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
eos_token: "<|im_end|>"
bos_token: "<|im_start|>"
```
</details><br>
# outputs/gelato-3b
This model is a fine-tuned version of [Qwen/Qwen2.5-3B](https://huggingface.co/Qwen/Qwen2.5-3B) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- num_epochs: 4
### Training results
### Framework versions
- Transformers 4.45.1
- Pytorch 2.3.1+cu121
- Datasets 2.21.0
- Tokenizers 0.20.0
|