File size: 5,046 Bytes
e0f348c
 
b491aa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27f037c
 
8cf3e9a
ee36e51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c83a982
 
 
6d74a61
ee36e51
 
 
b491aa4
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
---
license: llama3.1
model-index:
- name: Llama-Spark
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 79.11
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Llama-Spark
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 29.77
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Llama-Spark
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 1.06
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Llama-Spark
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 6.6
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Llama-Spark
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 2.62
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Llama-Spark
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 30.23
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Llama-Spark
      name: Open LLM Leaderboard
---
<div align="center">
  <img src="https://i.ibb.co/9hwFrvL/BLMs-Wkx-NQf-W-46-FZDg-ILhg.jpg" alt="Arcee Spark" style="border-radius: 10px; box-shadow: 0 4px 8px 0 rgba(0, 0, 0, 0.2), 0 6px 20px 0 rgba(0, 0, 0, 0.19); max-width: 100%; height: auto;">
</div>


Llama-Spark is a powerful conversational AI model developed by Arcee.ai. It's built on the foundation of Llama-3.1-8B and merges the power of our Tome Dataset with Llama-3.1-8B-Instruct, resulting in a remarkable conversationalist that punches well above its 8B parameter weight class.

## GGUFs available [here](https://huggingface.co/arcee-ai/Llama-Spark-GGUF)

## Model Description

Llama-Spark is our commitment to consistently delivering the best-performing conversational AI in the 6-9B parameter range. As new base models become available, we'll continue to update and improve Spark to maintain its leadership position. 

This model is a successor to our original Arcee-Spark, incorporating advancements and learnings from our ongoing research and development.

## Intended Uses

Llama-Spark is intended for use in conversational AI applications, such as chatbots, virtual assistants, and dialogue systems. It excels at engaging in natural and informative conversations.

## Training Information

Llama-Spark is built upon the Llama-3.1-8B base model, fine-tuned using of the Tome Dataset and merged with Llama-3.1-8B-Instruct.
## Evaluation Results
Please note that these scores are consistantly higher than the OpenLLM leaderboard, and should be compared to their relative performance increase not weighed against the leaderboard.
<div align="center">
  <img src="https://i.ibb.co/pfSGLtB/Screenshot-2024-08-01-at-11-40-42-PM.png" alt="Arcee Spark" style="border-radius: 10px; box-shadow: 0 4px 8px 0 rgba(0, 0, 0, 0.2), 0 6px 20px 0 rgba(0, 0, 0, 0.19); max-width: 100%; height: auto;">
</div>

## Acknowledgements

We extend our deepest gratitude to **PrimeIntellect** for being our compute sponsor for this project. 

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_arcee-ai__Llama-Spark)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |24.90|
|IFEval (0-Shot)    |79.11|
|BBH (3-Shot)       |29.77|
|MATH Lvl 5 (4-Shot)| 1.06|
|GPQA (0-shot)      | 6.60|
|MuSR (0-shot)      | 2.62|
|MMLU-PRO (5-shot)  |30.23|